ANALYZE
A Program for Cluster Analysis and Characterization of Conformational Ensembles of Polypeptides
Calculations of conformational characteristics, such as hydrogen bonds, turn position and types, RMS deviation from a reference conformation, interchromophore distances, interproton distances, etc.

Calculation of Boltzmann-averaged properties of the conformational ensemble.

Calculate the dihedral angles from supplied Cartesian coordinates.

Cluster analysis of the conformational ensemble by the minima spanning tree or minimum-variance method.

Fitting the statistical weights of the conformations so as to achieve the best agreement between the calculated average and experimental NOE spectra and coupling constants.
Cluster analysis

data
proximity (RMS) matrix
energy

algorithms
minimum-variance method
minimum spanning tree
with and without explicit generation of minimal tree
proximity matrix

minimal tree

minimum-variance

RMS [Å]
Determination of conformational ensemble of flexible polypeptide in solution

- low energy conformations

i. simulate the NOE spectra and J constant for each conformation
ii. determine statistical weight of conformation in order to obtain the best fit of averaged values to the experimental quantities
The theoretical NOE intensities are averages over all conformations of the ensemble:

\[\overline{v}_{kl} = V_o \sum_{i=1}^{NC} x_i v_{ikl} \quad k, l = 1, 2, \ldots NP \]

\[x_i \geq 0, \quad i = 1, 2, \ldots NC \]

\[\sum_{i=1}^{NC} x_i = 1 \]

- \overline{v}_{kl} – averaged integral intensity of the NOE peak
- v_{ikl} – NOE intensity for conformation i
- x_i – the statistical weight (fraction)
- V_o – scaling factor
- NP – the number of protons
- NC – the number of conformations
The empirical Karplus relationship for NH–C$^\alpha$H coupling constants:

$$J_{ik} = a_{ok} + a_{1k} \cos \theta_{ik} + a_{2k} \cos^2 \theta_{ik}$$

J_{ik} – the coupling constant of kth angle and ith conformation

θ_{ik} – NH–C$^\alpha$H angle

And as in the case of NOE intensities, they must be averaged:

$$\overline{J_k} = \sum_{i=1}^{NC} x_i J_{ik}$$
The weights are determined by least square fitting:

$$\min \Phi(V_\circ, x_1, x_2, \ldots, x_{NC}, a_{o1}, a_{11}, \ldots, a_{NJ}) =$$

$$\sum_{(k,l) \in \mathcal{K}} w_{kl} \left[v_{kl}^{exp} - \overline{v_{kl}}(V_\circ, x_1, x_2, \ldots x_{NC}) \right]^2$$

$$+ w_J \sum_{k=1}^{N\theta} \left[J_k^{exp} - \overline{J_k}(x_1, x_2, \ldots x_{NC}) \right]^2$$

$$+ \sum_{I=1}^{NJ} \frac{1}{\sigma^2_{a_{oI}}} (a_{oI} - a_{oI}^o)^2 + \frac{1}{\sigma^2_{a_{1I}}} (a_{1I} - a_{1I}^o)^2 + \frac{1}{\sigma^2_{a_{2I}}} (a_{2I} - a_{2I}^o)^2$$

\mathcal{K} – the set of all signals
w_{kl} – the weight of the the NOE peak $w_{kl} = \frac{1}{v_{kl}^{exp} + a}$
w_J – the weight of the coupling-constant term
$N\theta$ – the number of angles with determined J
NJ – the number of the sets of the constants in the Karplus equation
a_{kI}^o – the “standard” value of a_{kI} in the Karplus equation
$\sigma_{a_{kI}}$ – estimated standard deviation of a_{kI}^o
The maximum-entropy algorithm

\[\Psi(V_\circ, x_1, x_2, \ldots, x_{NC}) = \]
\[\Phi(V_\circ, x_1, x_2, \ldots, x_{NC}) + \alpha \sum_{i=1}^{NC} x_i \log x_i \]

the “entropy” term

\[-\alpha \sum_{i=1}^{NC} x_i \log x_i \]

is subtracted from the minimized sum of squares.
The maximum-entropy approach prevents overfitting.

The entropy term reaches its global minimum, if the statistical weights of all conformations are equal. Weight differentiating comes only from the Φ term that includes experimental information.

Therefore a common procedure is to choose the coefficient at the entropy term, α, so that the weighted χ² value be equal to the number of observations, which is equivalent to the requirement that the mean errors in the fitted quantities be comparable with the error estimates.
Application of maximum entropy approach to determination of solution conformation of DNS¹-c-[D-A₂bu²,Trp⁴,Leu⁵]-enkephalin
The conformational ensemble of DNS1-c-[D-A\textsubscript{2}Bu2,Trp4,Leu5]-enkephalin obtained by fitting the statistical weights of EDMC-generated conformations with $\alpha=0.3$.
Impulse plot of statistical weights of conformations of the EDMC ensemble versus relative conformational energy.
Determination of conformational equilibrium of peptides in solution by NMR spectroscopy and theoretical conformational analysis: application to the calibration of mean-field solvation models.

- If an adequate force field is used, conformations with large statistical weights obtained from the weight-fitting procedure should also have low energies.
- The solvation parameters of simple mean-field models can be adjusted to achieve this.
- Force field calibration based on such a procedure is particularly attractive regarding the parameterization of the solvation energy in non-aqueous solvents e.g., dimethyl sulfoxide, for which thermodynamic solvation data are scarce.
<table>
<thead>
<tr>
<th>Atom type</th>
<th>Atom name</th>
<th>(\sigma) water</th>
<th>(\sigma) DMSO iteration 1</th>
<th>(\sigma) DMSO iteration 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H (hydroxyl and amine)</td>
<td>0.050</td>
<td>-0.066</td>
<td>-0.094</td>
</tr>
<tr>
<td>2</td>
<td>H (amide)</td>
<td>-0.008</td>
<td>-0.040</td>
<td>-0.027</td>
</tr>
<tr>
<td>5</td>
<td>(\text{CH}_3(\text{sp}^3))</td>
<td>0.001</td>
<td>-0.012</td>
<td>-0.017</td>
</tr>
<tr>
<td>6</td>
<td>(\text{CH}_2(\text{sp}^3))</td>
<td>-0.002</td>
<td>-0.030</td>
<td>-0.044</td>
</tr>
<tr>
<td>7</td>
<td>(\text{CH} (\text{sp}^3))</td>
<td>0.032</td>
<td>-0.083</td>
<td>-0.139</td>
</tr>
<tr>
<td>8</td>
<td>(\text{CH}_2(\text{sp}^3,5)^c)</td>
<td>0.000</td>
<td>-0.034</td>
<td>0.024</td>
</tr>
<tr>
<td>9</td>
<td>(\text{CH} (\text{sp}^3,5)^c)</td>
<td>-0.031</td>
<td>-0.013</td>
<td>-0.128</td>
</tr>
<tr>
<td>10</td>
<td>(\text{CH} (\text{ar})^d)</td>
<td>-0.005</td>
<td>-0.011</td>
<td>-0.014</td>
</tr>
<tr>
<td>11</td>
<td>(\text{C} (\text{ar})^d)</td>
<td>-0.099</td>
<td>0.808</td>
<td>0.358</td>
</tr>
<tr>
<td>13</td>
<td>(\text{C} (>\text{C-OH})^e)</td>
<td>0.022</td>
<td>0.156</td>
<td>0.023</td>
</tr>
<tr>
<td>14</td>
<td>(\text{C} (\text{C}=\text{O}))</td>
<td>0.162</td>
<td>0.243</td>
<td>0.106</td>
</tr>
<tr>
<td>15</td>
<td>(\text{N} (\text{sp}^3))</td>
<td>-0.105</td>
<td>-0.031</td>
<td>-0.042</td>
</tr>
<tr>
<td>22</td>
<td>(\text{N} (\text{amide}))</td>
<td>-0.142</td>
<td>-0.649</td>
<td>-0.871</td>
</tr>
<tr>
<td>23</td>
<td>(\text{O} (\text{sp}^3))</td>
<td>-0.125</td>
<td>-0.041</td>
<td>-0.064</td>
</tr>
<tr>
<td>26</td>
<td>(\text{O} (\text{C}=\text{O}))</td>
<td>-0.138</td>
<td>-0.018</td>
<td>-0.037</td>
</tr>
</tbody>
</table>

\(^a \) Atom solvation types are same as in SRFOPT.
\(^b \) Original SRFOPT hydration parameters.
\(^c \) Five-membered proline ring.
\(^d \) Aromatic carbon or CH group.
\(^e \) Tyrosine ring carbon atom connected to the hydroxyl.
The package includes two versions of ANALYZE: one for fitting NMR spectra and one for cluster analysis and other purposes. The source files are contained in source_clust and source_nmr, respectively. This division is caused by practical reasons: the NMR and clustering parts are very memory consuming, which practically excludes their incorporation into one program.

The main input file for the ANALYZE program is organized in the same way as the input file for the ECEPP program.

Instructions are collected into "Data Groups" identified by a opening keyword which contains symbol '$' as the first character, i.e. $CLUSTER, $NOES, and closed by keyword $END.
Cluster analysis of the conformational ensemble

A. minimal-tree clustering

0.- go to directory cluster/MINTREE

1.- Prepare input file with suffix "inp" (e.g. tree.inp) with instructions for ANALYZE, include the following data groups (look into User Manual for detailed description of each group): $title $cntrl $seq $bridge $cluster $supat

2.- in $cntrl group use the following keywords:

$cntrl
runtyp=cluster nrclus1=1 nrclus2=6 res_code=one_letter
verbose print_pdb=1 tree
$end

short description of keywords

 runtyp=cluster defines the type of the run
 tree defines the algorithm for
 clustering clustering
 nrclus1=1 nrclus2=6 residues 1-6 will be superposed
 res_code=one_letter $seq will be defined by a one-letter
 code code
 print_pdb=1 write coordinates of only leading
3.- for this example data from EDMC run of oxytocin peptide will be used so the $seq should look like (see table in ECEPP manual for one-letter code residue names)

$$seq
HC_YIQNC_PLGN
$$end

and the definition of disulfide bond is necessary in data group $bridge

$$bridge
2 7
$$end

4.- finally in data groups $cluster and $supat we should include RMS cut-offs for clustering and atoms to be superposed

$$cluster
5 1.5 1.2 1.0 0.8 -0.7
5.0
$$end

the -0.7 means that dihedral angles and Cartesian coordinates will
atoms CA,C,N,SG from residues 1-6 (nrclus1=1 nrclus2=6 in $cntrl)
will be used for superposing structure

5.- Save the file and run ANALYZE

In the command line type

 analyze-clust tree otv16cl otv_tree

tree.inp is just prepared input file

outo.otv16cl contains the results of EDMC run for oxytocin used as input in this example
6.- Analyze output files

otv_tree.out contains output list file

otv_tree.ang contains the dihedral angles of the leading families

otv16cl.tex contains LaTeX picture output of the graph representing the minimal spanning tree, to prepare postscript file tree.ps use tree.tex template:

 use PCTex32 to load tree.tex, and click typeset to see the picture

files otv16cl0001.pdb - otv16cl0009.pdb contain Cartesian coordinates of leading members of each family within energy within defined 5.0 kcal cutoff, you can load them to molmol program using script molmol.csh

 to run script with Cygwin tcsh shell type in command prompt

tcsh molmol.csh
3. clustering with hydrogen bond and turn analysis without explicit generation of minimal-tree

).- go to directory cluster/NOTREE

.- Copy tree.inp from previous example to current directory with name notree.inp

?.- Make the following changes

 remove keyword 'tree' and add keywords 'beta_turns' and 'h_bonds' in $cntrl data group

}.- Save the file and run ANALYZE

n the command line type

 analyze-clust notree otv16cl otv_notree
4.- Analyze output files

look at additional information in otv_tree.out file

For real situation, clustering of several thousands of conformations, algorithm working without explicit construction of minimal-tree is much faster. The obvious disadvantage is that minimal-tree, which gives some idea about how to best partition the set of the conformations is not printed.
C. clustering using minimum-variance method

0.- go to directory cluster/MINVAR

1.- Copy tree.inp from first example to current directory with name minvar.inp

2.- Make the following changes

replace keyword 'tree' with keywords 'min_var', increase print_pdb=10 (so coordinates of up to 10 structures from each family will be written) and change the $cluster group into

$cluster
6 -2.0 1.5 1.2 1.0 0.8 0.7
5.0
$end
- Save the file and run ANALYZE

In the command line type

 analyze-clust minvar otv16cl otv_minvar

- Analyze output files

Check in otv_tree.out how the results of cluster analysis using minimum-variance method differs from minimum-tree

PDB files contain Cartesian coordinates of up to 10 members of each family with energy within the 5.0 kcal cutoff, you can load them to molmol program using script molmol.csh

 to run script with Cygwin tcsh shell type in command prompt

 tcsh molmol.csh
Fitting the statistical weights of the conformations so as to achieve the best agreement between the calculated average and experimental NOE spectra and coupling constants.

A. Pure least-squares fitting with no entropy term.

1. go to directory morass/least_squares

1. Prepare input file least_square.inp with instructions for ANALYZE, include the following data groups (look into User Manual for detailed description of each group): $title $cntrl $seq $bridge $noes $morass

$marquardt $coupling

2. in $cntrl group use the following keywords:

$cntrl
runtyp=morass
res_code=three_letter
$end
3. - for this example data from EDMC run of DNS1-c-[D-A\textsubscript{2}bu2,Trp4,D-Leu5] enkephalin will be used so include following seq $bridge$ data groups

seq

DAN
dab
lab Gly Trp lep

end

$bridges$

! 5

end

4. - data groups $noes$ and $marquardt$ controls the fitting procedure

$noes$

node=fitting conf=all bystrov=yes antinoe=long
geminal=no vicinal=yes rigid=no
wbase=0.01 wei_coupl=0.1
alpha_ent=0.0

end

$marquardt$

tolf=0.00001

end
5. data group morass includes parameters necessary for simulation of NOE spectra by MORASS program

morass

auc=0.45 time=0.300 vol0=100 sfrq=500 cutt=6.0
end

6. finally in data group coupling there are experimental coupling constants

coupling

<table>
<thead>
<tr>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>9.28</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>12.21</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>7.81</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>9.77</td>
</tr>
</tbody>
</table>
7. - Save the file and run ANALYZE

In the command line type

```
.analyze-morass least_square dansylD_clust least_square dansylD
```

`least_square.inp` is the prepared input file,

`sauto.dansylD_clust` contains the results of cluster analysis of EDMC run for DNS1-c-[D-A$_2$bu2,Trp4,D-Leu5] enkephalin used as input in this example,

`sansylD.noe` contains experimental NOE intensities.

8. - Analyze output files

`least_square.out` contains output list file

In subdirectory ..\PDB there are files with Cartesian coordinates for all conformations used in fitting, they were produced together with `sauto.dansylD_clust` by cluster analysis. You can visualize their weights with the molmol program using molmol_nmr.csh script with the number of conformation to be shown as argument. Only 6 conformation have weight > 0.0 so type
3. Maximum-entropy fitting example

- go to directory morass/FITTING/maxent

- Copy least_square.inp from previous example to current directory with name max_entropy.inp

- Set parameter alpha_ent to 0.3

- Save the file and run ANALYZE

In the command line type

```
analyze-morass max_entropy dansylD_clust max_entropy dansylD
```

- Analyze output files, compare weights with results of previous example

The entropy term forces the weights to be equal to each other, while the "sum of error" term Φ picks up the conformations that best fit to the experimental observables; the latter usually results in the selection of only a few out of several hundred, which is regarded rather strange by the authors of the program. Just a little admixture of the "disorder" term
You can visualize their weights in molmol program using molmol_nmr.csh script with the number of conformation to be shown as argument. For instance weights of 10 conformation sum up to 0.75

\texttt{tcsh molmol_nmr.csh 10}