Computational Pipeline for ChIP-seq Data Analysis

Minghui Wang, Qi Sun Bioinformatics Facility Institute of Biotechnology

The levels of regulators

Hua Yan et al (2014). Eusocial insects as emerging models for behavioural epigenetics, Nature reviews genetics

ChIP-seq

ChIP-seq Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing.

Goal Identify genome-wide binding sites of proteins of interesting

-Transcriptional factor/Histone marks/...

Major steps of ChIP-seq

Elaine R Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nature Methods 4:613-614

Single Vs paired-end sequencing

-Increase "mappability" of reads specially in repetitive regions.-Double sequencing cost.

Controls for ChIP-seq

Most experimental protocols involve a control sample that is processed the same way as the test sample except that no immunoprecipitation step (input) or no specific antibody (IgG)

-Input DNA does not demonstrate "flat"
 -Open chromatin regions tend to be fragmented more easily during shearing.
 -Amplification bias.
 -Mapping artifacts-increased coverage of more imappable" regions in repetitive regions due inaccuracies in number of copies in assembled genome.

ChIP-Seq experimental design

Data analysis protocol

Quality metrics of sequencing reads

- FastQC can be used for an overview of the data quality
- Phred quality scores used for trimming low quality bases

P = 10^(-Q/10); Q=30 base is called incorrectly 1 in 1000

fastqc input.fastq fastx_trimmer [-f N] [-I N] [-m MINLEN] [-i INFILE] [-o OUTFILE]

Reads mapping

Most popular software: Bowtie, BWA, MAQ etc

Multiple mapping hits were discarded

Reference genome; FASTA format: 2 lines for each read (">name", sequence)

>I

GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA

Illumina raw data; FASTQ format: 4 lines per read ("@name", sequence, "+", quality string)

@ILLUMINA:405:C269YACXX:1:1101:3833:1996 1:N:0:NAAA CAATGGAAGAACAGACACTACATATATTGAGCACATTATCATGTTA .

FFFFHHHFHJJJIHGIGGIGGGIJGIJJJIGEHIGIIJIIHIIHII

SAM output

ILLUMINA:405:C269YACXX:1:2115:4141:76972 0 I 46M 350017 42 0 0 JJJJJJ AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:46 YT:Z:UU ILLUMINA:405:C269YACXX:1:2203:10724:54489 0 Т 350046 42 46M 0 0 JJJJJJ AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:46 YT:Z:UU

Quality Control

Quality Control

Nonredundant fraction (NRF)

 $NRF = \frac{\#unique \text{ start positions of uniquely mappable reads}}{\#uniquely mappable reads}$

ENCODE recommends target of NRF >0.8 for 10 million uniquely mapped reads

samtools rmdup & picard MarkDuplicates

Signal-to-noise ratio

DNA fragments from a chromatin immunoprecipitation experiment are sequenced from the 5' end.

With ChIP-seq, the alignment of the reads to the genome results in two peaks (one on each strand) that located on flanking sides of the protein or nucleosome of interest.

The distance between strands specific peaks (k) represents the average sequenced fragment.

Cross-correlation

Strand cross-correlation is computed as the Pearson correlation between the positive and the negative strand profiles at different strand shift distances, k

Rscript run_spp_nodups.R -c=test.bam -savp -out=output_spp.out **ChIPQC**

Bailey, et al (2013). Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data, PLOS Computational Biology

Cross-correlation

Bad data with NSC values < 1.05 and RSC values < 0.8

Reads depth

Assessing coverage saturation

20~60 million reads

Peak-calling

Process of finding regions enriched

 \blacktriangleright MACS \rightarrow Yong Zhang et al

 \succ cisGenome \rightarrow Hongkai Ji et al

 \succ spp →Peter Park et al

▶ ...

- \succ rbrads \rightarrow Julie Ahringer et al
- ➢ BayesPeak → Simon Tavaré et al

Peak caller MACS2

Model-based Analysis of ChIP-seq data (MACS), which has been one of the most commonly used peak callers. MACS introduced a more sophisticated way of modeling the fragment size.

http://liulab.dfci.harvard.edu/MACS/index.html https://github.com/taoliu/MACS

Zhang Y (2008) Model-based Analysis of ChIP-Seq (MACS) Genome Biology 9:R137

Parameters and concepts of MACS2

- -DNA treatment & input sample
- -DNA fragment length
- -Band width
- -Effect genome size
- -Non-redundant reads
- -call summits
- -mfold
- -qvalue

Dynamic local lambda

Usage of MACS2

macs2 callpeak -t ChIP.bam -c Control.bam -f BAM -g hs -n test -B -q 0.01

- callpeak: Main MACS2 Function to Call peaks from alignment results.
- bdgpeakcall: Call peaks from bedGraph output.
- bdgbroadcall: Call broad peaks from bedGraph output.
- bdgcmp: Deduct noise by comparing two signal tracks in bedGraph.
- bdgdiff: Differential peak detection based on paired four bedgraph files.
- Filterdup: Remove duplicate reads at the same position, then convert acceptable format to BED format.
- predictd: Predict d or fragment size from alignment results.
- pileup: Pileup aligned reads with a given extension size (fragment size or d in MACS language). Note there will be no step for duplicate reads filtering or sequencing depth scaling, so you may need to do certain post- processing.
- randsample: Randomly sample number/percentage of total reads.
- refinepeak: (Experimental) Take raw reads alignment, refine peak summits and give scores measuring balance of forward- backward tags. Inspired by SPP

Callpeak - options

Various options to indicate/control input, output, peak modelling and peak calling macs2 callpeak

usage: macs2 callpeak [-h] -t TFILE [TFILE] [-c [CFILE [CFILE]]] [-f {AUTO,BAM,SAM,BED,ELAND,ELANDMULTI,ELANDEXPORT,BOWTIE, BAMPE}] [-g GSIZE] [keep-dup KEEPDUPLICATES]	Input
[buffer-size BUFFER_SIZE] [outdir OUTDIR] [-n NAME] [-B] [verbose VERBOSE] [trackline] [SPMR]	output
[-s TSIZE] [bw BW] [-m MFOLD MFOLD] [fix-bimodal] [nomodel] [shift SHIFT] [extsize EXTSIZE]	Modelling
[-q QVALUE] [-p PVALUE] [to-large] [ratio RATIO] [down-sample] [seed SEED] [nolambda] [slocal SMALLLOCAL] [llocal LARGELOCAL] [broad] [broad-cutoff BROADCUTOFF] [call-summits]	Peak Calling

MACS2 – program(s)

Examples of MACS setting

Default setting

macs2 callpeak -t ChIP.bam -c Control.bam -f BAM -g hs -n test

Adjust mfold limits and bandwidth

macs2 callpeak -t ChIP.bam -c Control.bam -f BAM -g hs -n test -B -q 0.01 –m 10 30 bw 300

Stop shifting model setting

macs2 callpeak -t ChIP.bam -c Control.bam -f BAM -g hs -n test -B -q 0.01 --nomodel --extsize 200 --shift 0

Post-processing

macs2 callpeak -t ChIP.bam -c Control.bam -f BAM -g hs -n test -B -q 0.01 –nomodel --extsize 200 --shift 0 --call-summits

Output of MACS2

```
# This file is generated by MACS version 2.1.0.20150731
# Command line: callpeak -t H3K4me3 wt combine.bam -c H3 wt combine.bam -n H3K4me3 wt h3 narrow --nomodel --shift 0
# ARGUMENTS LIST:
# name = H3K4me3 wt h3 narrow
# format = AUTO
# ChIP-seq file = ['H3K4me3 wt combine.bam']
# control file = ['H3 wt combine.bam']
# effective genome size = 9.00e+07
# band width = 300
# model fold = [2, 10]
# gvalue cutoff = 1.00e-02
# Larger dataset will be scaled towards smaller dataset.
# Range for calculating regional lambda is: 1000 bps and 10000 bps
# Broad region calling is off
# tag size is determined as 101 bps
# total tags in treatment: 30801118
# tags after filtering in treatment: 24581775
# maximum duplicate tags at the same position in treatment = 1
# Redundant rate in treatment: 0.20
# total tags in control: 50559028
# tags after filtering in control: 41283295
# maximum duplicate tags at the same position in control = 1
# Redundant rate in control:
# d = 178
                                               pileup -log10(pvalue) fold enrichment -log10(qvalue) name
chr
                                abs summit
        start end
                        length
I
        3771
                        793
                                4075
                                       246.00 82.34708
                                                               4.57456 80.10690
                                                                                       H3K4me3 wt h3 narrow peak 1
                4563
I
        16402
               17106
                       705
                                16903
                                       201.00 58.86108
                                                               4.01713 56.87683
                                                                                       H3K4me3 wt h3 narrow peak 2
I
        24137
                24786
                       650
                                24375
                                       187.00 33.28239
                                                               2.77739 31.53087
                                                                                       H3K4me3 wt h3 narrow peak 3
I
                                                               4.18117 84.38020
        26239
               27330
                       1092
                                26669
                                       287.00 86.67876
                                                                                       H3K4me3 wt h3 narrow peak 4
I
        39624
               40498
                       875
                                40095
                                       134.00 13.96716
                                                               2.06714 12.45965
                                                                                       H3K4me3 wt h3 narrow peak 5
I
        46700
               47876
                       1177
                                47256
                                       303.00 106.52362
                                                               4.83328 103.85027
                                                                                       H3K4me3 wt h3 narrow peak 6
        12010
                12110
                       120
                                c . . . .
                             Summit
                                                                FC
```

Output of MACS2

[mino	gh@cbsum1c2	2b007 H3K	(4me3]\$ more H3K4me3 wt h3 narro	w_peaks	.narrow	Peak				
I	3770	4563	H3K4me3 wt h3 narrow peak 1	801		4.57456	82.34708	80.10690	304	
I	16401	17106	H3K4me3_wt_h3_narrow_peak_2	568		4.01713	58.86108	56.87683	501	
I	24136	24786	H3K4me3_wt_h3_narrow_peak_3	315		2.77739	33.28239	31.53087	238	
I	26238	27330	H3K4me3_wt_h3_narrow_peak_4	843		4.18117	86.67876	84.38020	430	-
I	39623	40498	H3K4me3_wt_h3_narrow_peak_5	124		2.06714	13.96716	12.45965	471	Fold changes
I	46699	47876	H3K4me3_wt_h3_narrow_peak_6	1038		4.83328	106.52362	103.85027	556	i ulu changes
I	63262	63440	H3K4me3_wt_h3_narrow_peak_7	25		1.47600	3.81111 2.59168	168		
I	70036	70674	H3K4me3_wt_h3_narrow_peak_8	247		2.68215	26.39363	24.71489	222	
I	71021	71303	H3K4me3_wt_h3_narrow_peak_9	20		1.44180	3.23232 2.04968	276		
I	72183	72675	H3K4me3_wt_h3_narrow_peak_10	52		1.68462	6.54395 5.20760	144		
I	92180	94658	H3K4me3_wt_h3_narrow_peak_11	226		2.48850	24.27625	22.62254	1280	
I	96293	96756	H3K4me3_wt_h3_narrow_peak_12	267		2.87313	28.41636	26.71611	175	
I	106983	107430	H3K4me3_wt_h3_narrow_peak_13	43		1.59552	5 0460 4 27026	1.61		P value
I	107835	112973	H3K4me3_wt_h3_narrow_peak_14	1329		5.70137	136.92546	132.90640	3412	i value
I	113096	113434	H3K4me3_wt_h3_narrow_peak_15	114		2.08924	12.97291	11.48340	130	
I	128242	129073	H3K4me3_wt_h3_narrow_peak_16	231		2.44169	24.77097	23.11132	410	
I	180049	180740	H3K4me3 wt h3 narrow peak 17	188		2.48255	20.47548	18.87084	347	
I	182198	183518	H3K4me3_wt_h3_narrow_peak_18	979		4.51052	100.47073	97.93903	663	
I	215397	215715	H3K4me3_wt_h3_narrow_peak_19	272		2.92059	28.95876	27.25225	150	
I	215831	216244	H3K4me3_wt_h3_narrow_peak_20	180		2.51876	19.60441	18.01167	131	
I	216422	217849	H3K4me3_wt_h3_narrow_peak_21	123		2.21495	13.82168	12.31756	63	
I	237416	237664	H3K4me3_wt_h3_narrow_peak_22	127		2.25728	14.24689	12.73433	153	
I	250818	251170	H3K4me3_wt_h3_narrow_peak_23	36		1.51265	4.95940 3.68271	208		
I	251488	252492	H3K4me3_wt_h3_narrow_peak_24	332		3.07750	35.02529	33.25694	151	
I	288149	289602	H3K4me3_wt_h3_narrow_peak_25	1160		4.93430	119.16950	116,08926	780	
I	313206	313515	H3K4me3_wt_h3_narrow_peak_26	28		1.47910	4.12182 2.88656	53		y value
I	313676	315746	H3K4me3_wt_h3_narrow_peak_27	1291		5.36521	132.92006	129.15512	1395	
I	315973	316279	H3K4me3_wt_h3_narrow_peak_28	171		2.30430	18.74006	17.15957	172	
I	316456	316664	H3K4me3_wt_h3_narrow_peak_29	115		2.18888	13.06463	11.57391	83	
I	322624	324424	H3K4me3_wt_h3_narrow_peak_30	1256		5.20605	129.19919	125.65342	762	
I	342969	343228	H3K4me3_wt_h3_narrow_peak_31	168		2.44127	18.40005	16.82453	129	
I	346655	346968	H3K4me3_wt_h3_narrow_peak_32	29		1.47514	4.23354 2.99142	34		
I	348076	348967	H3K4me3_wt_h3_narrow_peak_33	631		3.37859	65.17451	63.13166	536	Summit to
I	363772	364103	H3K4me3_wt_h3_narrow_peak_34	124		2.19932	13.94385	12.43665	272	501111111110
I	364266	365366	H3K4me3_wt_h3_narrow_peak_35	483		3.26654	50.28297	48.37406	209	nool start
-										
										· · · · · · · · · · · · · · · · · · ·

How to make the best use of the variability between replicates ???

Consistency of replicates: IDR

> IDR the irreproducible discovery rate

- Each list of peaks is ranked according to pvalue or signal score
- The IDR method adopted the bivariate rank distributions over the replicates in order to separate signal from noise based on consistency and reproducibility of identifications

Rscript batch-consistency-analysis.r [peakfile1] [peakfile2] -1 [outfile.prefix] 0 F p.value Rscript batch-consistency-plot.r [npairs] [output.prefix] [input.file.prefix1] [input.file.prefix2] [input.file.prefix3]

SPT20 Replicates (low reproducibility)

bedtools multicov [OPTIONS] -bams aln.1.bam aln.2.bam ... aln.n.bam -bed <bed/gff/vcf>

Peak region merging and statistics

bedtools multicov [OPTIONS] -bams aln.1.bam aln.2.bam ... aln.n.bam -bed <bed/gff/vcf>

Multiple replicates

$$g(N_{ij}) = \mu + x_i \beta_i + z_j u_j + \varepsilon_{ij}$$

$$N_{ij} : \text{observed reads count for } i^{th} \text{ sample and } j^{th} \text{ biological replicate}$$

$$\beta_i : i^{th} \text{ sample effect (fixed)}$$

$$u_j : \text{ random effect due to } j^{th} \text{ biological replicate}$$

$$\varepsilon_{ij} : \text{ error}$$

Link function: log-link for Poisson family

More complex comparison

Parameter	Contrast 1	Contrast 2	Contrast 3
$eta_{_{Young_ChIP}}$	1	0	0.5
$eta_{Young_control}$	-1	0	-0.5
eta_{Old_ChIP}	0	1	-0.5
$eta_{Old_control}$	0	-1	0.5

Yong IP Vs control; Old IP Vs control and Yong Vs Old under control