
Linux for Beginners – Part 2

3CPG Workshop

http://cbsu.tc.cornell.edu/lab/doc/Linux_workshop_Part2_Nov_2011.pdf

Robert Bukowski
Computational Biology Service Unit

http://cbsu.tc.cornell.edu/lab/doc/Linux_workshop_Part2_Nov_2011.pdf
http://cbsu.tc.cornell.edu/lab/doc/Linux_workshop_Part2_Nov_2011.pdf

Part 1: (March Nov. 7, 2011)

 Reserving time on 3CPG Lab workstations

 Logging in to a Linux workstation

 Terminal window and tricks

 Linux directory structure

 Working with files

 Working with text files

Part 2: (today)

 Transferring files to/from workstations

 Running applications

 Note: this will only cover the Linux aspect of running applications; the functionality and the
biological aspect will be covered in workshop Using BioHPC Lab Software on Nov. 28, 2011.

 Basics of scripting (shell and Perl)

 Note: this will not teach you scripting – just get you started. We are planning a series of workshops
on Perl in the fall – stay tuned. In the meantime - use multiple resources online (google “Perl
tutorial”, for example).

Topics

cbsulm01,cbsulm02
(Linux, 64 and 500 GB

RAM)

cbsum1c1b00n (Linux)
cbsum1c2b00n (Linux)
31 “remote” machines

cbsuwrkst2,3,4 (Linux)
3 “interactive”

machines with nice
consoles (also

accessible remotely)

CBSU/3CPG Lab

Disk usage guidelines: Local vs. network directories
(3CPG LAB – specific)

/
………
|-- home/bukowski
|-- programs/
|-- shared_data/
`-- workdir/bukowski

/
………
|-- home/bukowski
|-- programs/
|-- shared_data/
`-- workdir/bukowski

/
………
|-- home/bukowski
|-- programs/
|-- shared_data/
`-- workdir/bukowski

cbsuwrkst2

cbsuwrkst3

cbsuwrkst4

/
………
|-- /bigdisk/home/bukowski
|-- /bigdisk/programs/
|-- /bigdisk/shared_data/

Cbsuwrkstfsrv1
(file server)

Network directories
/home, /programs, /shared_data
(with all subdirectories)
• Physically located on the file

server
• Visible from all workstations
• Relatively SLOW access – DO NOT

run any calculations there, avoid
transferring large files there

Local directories:
/workdir (with all subdirectories), all
other directories
• Physically attached to “its own”

workstation
• Not visible from other

workstations
• Fast access – all calculations

should be run in /workdir

Disk usage guidelines
(3CPG lab specific)

Your home directory (e.g., /home/bukowski)
• Is network-mounted and therefore access to it is slow
• Visible from each workstation – no matter which one you log in to
• 200 GB quota will be imposed (may change depending on conditions)
• Use it to store files which you use frequently (reference genomes, index files) or which are

small and hard to replace (scripts and executables)
• Never run any disk intensive applications (all Next-Gen tools are disk intensive) with your home

directory (or any of its subdirectories) as the “current directory”. Work on /workdir instead.

The /workdir directory
• Is local to its workstation (located on disks physically attached to the machine’s controller)
• Not visible from other workstations
• Temporary – the content of /workdir may be erased after you log out. When you log in again,

your files may be no longer there
• After you log in, create your own subdirectory in /workdir (if not already there)
• All the files to be used in processing have to be moved/copied to that subdirectory
• Applications have to be started in that subdirectory
• Important output files have to be copied back to the home directory or (better yet) out of the

machine.

Checking disk space

How much disk space is taken by my files?

du –hs . (displays combined size of all files in the current directory and recursively in
 all its subdirectories)
du –h --max-depth=1 . (as above, but sizes of each subdirectory are also displayed)

How much disk space is available?

df -h

/workdir is a part of it
– this space is yours
during your reservation

Your home directory is
a part of it – you share
space with other users

File transfer
between PC or Mac and a lab workstation

On Windows PC: install and use your favorite sftp client program, such as
• winscp: http://winscp.net/eng/index.php
• CoreFTP LE: http://www.coreftp.com/
• FileZilla (client): http://filezilla-project.org/
• … others…
• When connecting to Lab workstations from a client, use the sftp protocol. You will be asked for

your user name and password (the same you use to log in to the lab workstations).
• Transfer text file in text mode, binary files in binary mode (the “default” not always right).
• All clients feature

• File explorer-like graphical interface to files on both the PC and on the Linux machine
• Drag-and-drop functionality

On a Mac: file transfer program is fetch (recommended by Cornell CIT)
• http://www2.cit.cornell.edu/services/systems_support/filefetch.html#fetchinst
• graphical user interface
• Drag-and-drop functionality

Large files (> 1 GB) should be transferred to your subdirectory under /workdir
(e.g., /workdir/bukowski). Avoid storing such files in your home directory. Never
process such files in home directory (or any subdirectory of your home)

http://winscp.net/eng/index.php
http://winscp.net/eng/index.php
http://www.coreftp.com/
http://www.coreftp.com/
http://filezilla-project.org/
http://filezilla-project.org/
http://filezilla-project.org/
http://filezilla-project.org/
http://www2.cit.cornell.edu/services/systems_support/filefetch.html
http://www2.cit.cornell.edu/services/systems_support/filefetch.html

File transfer
fixing Windows/Mac – Linux text file conversion problems

unix2dos my_file (convert a text file in linux format my_file to Windows/Mac
format, i.e., change line endings)

dos2unix my_file (convert a text file my_file in Windows/Mac format to Linux
format, i.e., change line endings)

File transfer
between a lab workstation and another Linux machine

Suppose we want to transfer a file from cbsuss04.tc.cornell.edu (another Linux
machine; substitute “your” Linux machine here) and cbsuwrkst2 lab workstation.

Option 1: when logged in to cbsuwrkst2, sftp to cbsuss04 by running the following commands:

 cd /workdir/bukowski (this is where we want the file to be on cbsuwrkst2)
 sftp bukowski@cbsuss04.tc.cornell.edu (instead of “bukowski”, use your own
 user name on cbsuss04; you will be asked for password)
 cd /data/bukowski/reads (on cbsuss04, go to the directory where the file is)
 get my_read.fastq (transfer, or “get” the file from cbsuss04)
 quit (exit sftp client and disconnect from cbsuss04 – we are back on
 cbsuwrkst2)

Option 2: when logged in to cbsuss04, sftp to cbsuwrkst2 by running the following commands:

 cd /data/bukowski/reads (this is where the file is on cbsuss04)
 sftp bukowski@cbsuwrkst2.tc.cornell.edu (instead of “bukowski”, use your
 own user name on cbsuss04; you will be asked your lab password)
 cd /workdir/bukowski (on cbsuwrkst2, go to the directory where the file is
 supposed to be stored)
 put my_read.fastq (transfer, or “put” the file on cbsuwrkst2)
 quit (exit sftp client and disconnect from cbsuwrkst2– we are back on
 cbsuss04)

File transfer
from web- and ftp sites to lab workstations

Option 1: download using a web browser on workstation. While logged in to the
workstation, execute the following:
• firefox (this will start the Firefox browser on the workstation)

• If you are working remotely from a PC and not using VNC, you will need to have
Xming running. Note: Firefox browser you just started is running on Linux
workstation, your PC is just displaying the browser’s window. May be slow on slow
networks…

• Navigate to the site you want to download the file from, click on download link. The
browser will ask for destination directory (on the workstation !) to put the file in. Select
a directory (should be in /workdir if the file is large) and let the browser complete the
download.

• Close Firefox browser if no longer needed.

File transfer
from web- and ftp sites to lab workstations

Option 2: run wget command on the workstation (if you know the URL of the file)
• Example:

 wget ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

(will download the file BLOSUM100 from the NCBI FTP site and deposit it in the current directory under
the name BLOSUM100)

• another Example (the following should be typed on one line):

wget -O e_coli_1000_1.fq
“http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?cntrl=646698859&laneid=487&mode=http&file=e_coli_1000_1.fq”

(the command above can be used to download files given by complicated URLs; note the “” marks
around the link and the –O option which specifies the name you want to give the downloaded file)

More about commands

• Each command is, in fact, an executable program stored somewhere on disk,
usually in places like /bin, /usr/bin, or /usr/local/bin
• which mv (tells us where on disk the command mv is located)

• Why can we just use mv rather than the full name /bin/mv ? Because of the search
path environment variable which is defined for everybody. The you type mv, the
system tries each directory on the search path one by one until it finds the
corresponding executable.
• echo $PATH (displays the search path)
• Note: the current directory ./ is NOT in the search path. If you need to run a

program located, say in your home directory, you need to precede it with ./,
for example, ./my_program

• The next-gen analysis applications installed on the workstations are also in your
$PATH. Thus, you can launch them using just the name rather than the full path:
• Example: command samtools is equivalent to

/programs/bin/samtools/samtools

Example project

Objective: align Illumina reads to D. Melanogaster genome
• Download data from FTP server (using Firefox or wget command)
• Extract files: reference genome (FASTA) and Illumina reads (FASTQ)
• Index reference genome (i.e., prepare it for use with BWA aligner program)
• Align reads using BWA aligner
• Convert alignments to SAM format
• Convert alignments in SAM format to BAM format

Download/unpack project data

 wget ftp://cbsuftp.tc.cornell.edu/software/CBSUtools/Linux2workshop/fly_example.tgz

tar -xzvf fly_example.tgz

cd /workdir/bukowski
mkdir d_melanodaster
cd d_melanogaster

Create a directory on local scratch disk (/workdir)

Download the tgz archive with sample files

Unpack the tgz archive

Running applications. Example: genome indexing

Very general syntax for launching applications: <path_to_application_executable> <options>

Path to
application
executable

Program options

bwa index –p bwaindex/drosophila flygenome.fa

Now launch the actual indexing program
• We will run the program in directory under /workdir/bukowski/d_melanogaster
• We need the FASTA file with the genome, flygenome.fa, in that directory
• We want the index files to end up in /workdir/bukowski/d_melanogaster/bwaindex and we want their names to

start with “drosophila”
• Study the BWA manual (http://bio-bwa.sourceforge.net/bwa.shtml) to learn more about this program’s options

First, cd to work directory and create a subdirectory for indexed genome

cd /workdir/bukowski/d_melanogaster
mkdir bwaindex

• After 2-3 minutes, the index files will be written to bwaindex (check this by doing “ls –
al” in bwaindex directory!). Any information messages (the program “log”) will be
written to the screen.

• For larger genomes, the indexing step will take longer.

http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml

Running applications, cnt.

Redirect screen
output

bwa index –p bwaindex/drosophila flygenome.fa 1> run.log 2> run.err

Run in the
background

bwa index –p bwaindex/drosophila flygenome.fa 1> run.log 2> run.err &

Saving log messages
• Normally, log messages are printed to the screen (and then lost)

• Two streams: “standard output” (STDOUT), “standard error” (STDERR)
• To save them, redirect to files on disk – you can examine them later

Running a program in the background
• Normally, the program will run to completion (or crash), blocking the terminal window
• By putting an “&” at the end of command, we can send the program to the background

• Terminal will return to prompt immediately – you will be able to continue working
• Good for long-running programs (most programs of interest…)
• Can run multiple programs simultaneously if more then 1 processor available on a

machine and if there is enough memory

Checking on your application: the top command
To exit – just type q

Running applications

Running applications
Checking on your application:
the ps command – display info about all your processes – one of them should be bwa

Process ID (PID) Running time

ps –ef | grep bukowski

Try man ps for more info about the ps command.

Running applications

Stopping applications
• If the application is running in the foreground (i.e., without “&”), it can be

stopped with Ctrl-C (press and hold the Ctrl key, then press the “C” key)
issued from the window (terminal) it is running in.

• If the application is running in the background (i.e., with “&”), it can be
stopped with the kill command

 kill -9 <PID>

Where <PID> is the process id obtained rom the ps command. For
example, to terminate the bwa process form the previous slide, we
would use

 kill -9 3159

Try man kill for more info about the kill command.

Running applications: BWA alignment and conversion
to BAM format

Three steps (commands) are required:

bwa aln bwaindex/drosophila short_reads.fastq 1> aln.sai 2> log

bwa samse bwaindex/drosophila aln.sai short_reads.fastq 1> aln.sam 2>> log

samtools view -bS -o aln.bam aln.sam 2>> log

This is simple example of a “pipeline” – several commands run in succession, so that
output from one command is input to the next one.

Running applications
basic shell scripting

The three commands from previous slide may be put in a text file, e.g., bwascript.sh,
created with a text editor, which looks like this:

The script may then be executed:

chmod u+x bwascript.sh (make the file executable; needs to be done only once, right
after the script is created and saved)

./bwascript.sh 1> script.log 2> script.err & (run script in the background)

Note: use “&” for the whole script rather than in each command (why?)

Running applications
basic shell scripting

Slightly more complicated (and more useful) script (call it bwascript1.sh)

Run the script with the following commands:
 chmod u+x bwascript1.sh (make the file executable; needs to be done only once, after the
script is created)
 ./bwascript1.sh short_read.fastq 1> script.log 2> script.err &
The result will be the file called short_read.fastq_aln.bam

This script:
• Runs the bwa

and samtools
commands

• Input file with
reads is
specified as
an argument

• After each
step, removes
intermediate
files to save
space

Running applications
basic shell scripting

Even more complicated (and more useful) script (call it bwascript2.sh)

Run the script with the following commands:
chmod u+x bwascript2.sh (make the file executable; needs to be done only once)
./bwascript2.sh short_read.fastq 1> script.log 2> script.err &

This script:
• Runs the bwa and samtools

commands
• Input read file specified as an

argument
• Performs simple checks of the

completion status of each
command (by verifying the
existence of this step’s output file)

• removes intermediate files to
save space (or terminates if a step
failed)

• Prints current date and time after
each step

Similar script in perl
way too complicated – to show possibilities

Perl
Pros:
 Available on all platforms
 Rich but intuitive syntax

 Each task can be programmed in many different, equivalent ways
 Arrays, loops, conditional statements, etc. – full programming infrastructure
 Access to operating system commands and programs (through system function)
 Functions

 write your own
 Use extensive library of perl modules written by others (http://www.cpan.org)

 BioPerl http://www.bioperl.org/wiki/Main_Page - also a list of resources for
learning perl

 Efficient for text parsing/processing (not shown in our examples)

Cons:
 Perl is an interpreted language – code 10-100 times slower than compiled languages (C,

C++, Java)
 Syntax flexibility may lead to confusion and hard-to-find bugs
 Poor memory management (i.e., objects take much more memory than really needed;

some memory leaks)

http://www.cpan.org/
http://www.bioperl.org/wiki/Main_Page
http://www.bioperl.org/wiki/Main_Page

More about scripting

Multiple scripting tools available
• shell (bash, tcsh – good for stitching together shell commands)
• perl (probably the most popular in biology, due to BioPerl module package)
• python (good numerical analysis tools – NumPy, SciPy packages)
• awk (mostly text parsing and processing)
• sed (mostly text parsing and processing)
• R (rich library of numerical analysis and statistical functions)

A separate course on Perl scripting is planned in the fall.

