
Linux for Biologists – Part 3

http://cbsu.tc.cornell.edu/lab/doc/Linux_workshop_Part3.pdf

Robert Bukowski
Institute of Biotechnology

Bioinformatics Facility
(aka Computational Biology Service Unit - CBSU)

http://cbsu.tc.cornell.edu/lab/doc/Linux_workshop_Part1.pdf

File Transfer: overview

web
Another Linux or Mac machine

(call it cbsuss04)

Linux workstation
e.g., cbsuwrkst2

Mac Windows PC

Download file using web browser (e.g., firefox)
OR

Use the URL directly with wget command, e.g.,
wget ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

Run scp command from terminal of
either machine

Use fetch–a
graphical file transfer
program for MACs to
sftp to Linux machine

sftp to Linux machine
using any graphical
sftp client program,
such as:
FileZilla
WinScp
CoreFTP
…..

SFTP: secure file
transfer protocol

SCP: secure file
transfer protocol

sftp: best done using graphical GUI client

Some SFTP clients for Windows PC:

Å FileZilla (client): http://filezilla-project.org/
Å winscp: http:// winscp.net/eng/index.php
Å CoreFTP LE: http://www.coreftp.com/

Some SFTP clients for Mac

ÅFetch
http:// www2.cit.cornell.edu/services/systems_sup
port/filefetch.html#fetchinst
ÅFileZilla http://filezilla-project.org/

http://filezilla-project.org/
http://winscp.net/eng/index.php
http://www.coreftp.com/
http://www2.cit.cornell.edu/services/systems_support/filefetch.html#fetchinst
http://filezilla-project.org/

FileZilla window

Using graphical SFTP client

Using graphical sftp client

ÅLaunch SFTP program on a client (e.g., laptop). Use the sftp
protocol (port 22) to connect to Linux machine. You will be
asked for your user name and password (the same you use to
log in to the lab workstations via sshclient).

ÅTransfer text file in text mode, binary files in binary mode (the
default“Auto” should be right, but not always).
ÅWhen in doubt, use dos2unix or mac2unix after transfer f

text files

ÅAll clients feature
ÅFile explorer-like graphical interface to files on both the PC

and on the Linux machine
ÅDrag-and-drop functionality
ÅOther protocols (like FTP) typically also supported

Files transferred to Linux machine from a Windows or Mac machine often have
line endings incompatible with Linux (depends on transfer software used and its
settings)

To fix line endings, use dos2unix command

dos2unix my_file mac2unix my_file

(the file my_file will have linuxline endings)

dos2unix ïn my_file my_file_converted

mac2unix ïn my_file my_file_converted

(the file my_file_converted will have linuxline endings, the original file
my_file will be kept)

Fixing line ending problems

File Transfer: overview

web
Another Linux or Mac machine

(call it cbsuss04)

Linux workstation
e.g., cbsuwrkst2

Mac Windows PC

Download file using web browser (e.g., firefox)
OR

Use the URL directly with wget command, e.g.,
wget ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

Run scp command from terminal of
either machine

Use fetch–a
graphical file transfer
program for MACs to
sftp to Linux machine

sftp to Linux machine
using any graphical
sftp client program,
such as:
FileZilla
WinScp
CoreFTP
…..

SFTP: secure file
transfer protocol

SCP: secure file
transfer protocol

While logged in on the localmachine, execute:

cd /data/reads

scp my_sequence.fa bukowski@cbsuwrkst2.tc.cornell.edu:/ workdir /files

To copy in the opposite direction:

scp bukowski@cbsuwrkst2.tc.cornell.edu :/ workdir /files/ my_sequence.fa .

File transfer: command-line scp
Linux <-> Linux, Mac <-> Linux

NOTES:
Å scp is a generalization of cp , where the source or the target file is on a remote

machine
Å Most cp options work with scp (scp ïr will recursively copy whole directory)
Å The remote machine must accept connection requests (depends on network config)

Objective: copy a file /data/reads/my_sequence.fa from the local Linux or Mac machine
to directory /workdir/files on a remote Linux machine called cbsuwrkst2.tc.cornell.edu

File Transfer: overview

web
Another Linux or Mac machine

(call it cbsuss04)

Linux workstation
e.g., cbsuwrkst2

Mac Windows PC

Download file using web browser (e.g., firefox)
OR

Use the URL directly with wget command, e.g.,
wget ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

Run scp command from terminal of
either machine

Use fetch–a
graphical file transfer
program for MACs to
sftp to Linux machine

sftp to Linux machine
using any graphical
sftp client program,
such as:
FileZilla
WinScp
CoreFTP
…..

SFTP: secure file
transfer protocol

SCP: secure file
transfer protocol

File transfer: from the web to Linux

Option 1: use a web browser (such as Firefox)

Å Connect to Linux machine in graphical mode (VNC)
Å Start Firefox (in terminal window, type firefox, or click on web browser icon)
Å Note: the web browser is running on Linux machine, not on your laptop!

Å Navigate to desired site and download the file (will ask for directory in which to deposit
the file)

Let’s try to download the following file:

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

For ftp and sftp links, FileZilla can also be used instead of a web browser

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

File transfer: from the web to Linux

Option 2: run wget command on the workstation (if you know the URL of the file)

Å Example 1: simple URL

wget ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

(will download the file BLOSUM100 from the NCBI FTP site and deposit it in the current directory under
the name BLOSUM100)

Å Example 2: complicated URL

wget -O e_coli_1000_1.fq
“http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?cntrl=646698859&laneid=487&mode=http&file=e_coli_1000_1.fq”

(whole command should be on one line; note the “” marks around the link and the –O option which
specifies the name you want to give the downloaded file)

Example 3: Downloading Illumina sequencing results

Fragment of notification e-mail from Cornell Genomics Facility:

File transfer: from the web to Linux

Sample: P_Teo_10_b

File: 6581_7527_30809_C877GANXX_P_Teo_10_b_R1.fastq.gz

Size 18570118164 bytes, MD5: 118c0c974a6c4dd81895c26cdd4208e6

Link:

http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=94863491&refid=93804

Sample: P_Teo_11_b

File: 6582_7527_30810_C877GANXX_P_Teo_11_b_R1.fastq.gz

Size 17854406437 bytes, MD5: 20be4a4305b6a2f3260c461536bbf060

Link:

http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=1244420836&refid=93805

e.t.c.

How to get these files onto a Linux machine?

http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=94863491&refid=93804
http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=1244420836&refid=93805

How to get the sequencing files onto a Linux machine?

1. Open Firefox (it’s on a Linux machine, so need to be logged in through
VNC) and navigate to each URL –very tedious if the number of files
large

2. Use wget commands (provided in the notification e-mail as
attachment file download.sh)

wget - q - c - O 6581_7527_30809_C877GANXX_P_Teo_10_b_R1.fastq.gz

http :// cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=9486

3491&refid=93804

wget - q - c - O 6582_7527_30810_C877GANXX_P_Teo_11_b_R1.fastq.gz

http :// cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=1244

420836&refid=93805

A couple of lines from the attached file download.sh (typically there is more than two
wget commands):

Transfer this file to your Linux machine and execute it as shell script:

sh ./download.sh

Exercise: batch download of files from sequencing facility

(end of the slide deck)

For more, step-by-step instructions on how to use
graphical Linux applications while working remotely, see
http:// cbsu.tc.cornell.edu/lab/doc/Remote_access.pdf

This is one of the ways to get
graphics on Linux workstations

Å Start a VNC server on Linux machine (typically installed by default)

Å (Download) and start a VNC client on your laptop, connect to VNC server on
Linux machine (https://www.realvnc.com/download/viewer/)

Å Your laptop will display whole Linux graphical desktop (just like sitting in front
of a monitor connected to a Linux machine)

VNC: logging in to a BioHPC Lab Linux workstation in
graphical mode

http://cbsu.tc.cornell.edu/lab/doc/Remote_access.pdf
https://www.realvnc.com/download/viewer/

VNC: starting VNC server on BioHPC Lab
In web browser, navigate to http:// cbsu.tc.cornell.edu/, log in (if not yet logged in), click on User:your_id,
select tab My Reservations

Click “Connect VNC”, to
initialize VNC connection, or
“Reset VNC” re-initialize

Select resolution you want

http://cbsu.tc.cornell.edu/

VNC: starting VNC server on BioHPC Lab

VNC: starting the client and logging in

Right-clickanywhere within blue desktop, select Open Terminal …. or
…. click Applications -> Accessories -> Terminal

VNC: logged in

VNC sessions are persistent

They run even when the client is disconnected

If you need to reset the session you need to use
“Reset VNC” link

Equivalent to Windows Remote Desktop

VNC: summary

Exercise: connect to your assigned workstation using VNC

ÅGo to “My Reservations” page
http:// cbsu.tc.cornell.edu/lab/lab.aspx, log in, click on “My Reservations” menu link

ÅChoose resolution (depends on your monitor)

ÅClick on “Connect VNC”

ÅFollow prompts to connect your VNC client to your VNC
session

ÅOpen terminal window in the VNC desktop by right-click on
the desktop background and choosing “Open Terminal”.

ÅDisconnect (close VNC window) and then reconnect. Is the
session still alive?

http://cbsu.tc.cornell.edu/lab/lab.aspx

Running applications

Running applications

Ç Very much like running system commands

Ç (Very) general syntax

<path_to_application_executable > <options>

Ç A few quick examples:

blastall - p blastx - b 1 - d ./databases/ swissprot - i seq_tst.fa

samtools flagstat alignments.bam

tophat - p 7 - o B_L1 - 1 -- transcriptome - index ZmB73_5a_WGS \

-- no- novel - juncs genome/maize reads_R1.fastq.gz reads_R2.fastq.gz

Running applications

ÇWhy can we call, say, samtools by just typing samtools rather than the full path
(in this case, /programs/bin/ samtools / samtools) ?

Á Because of the search pathenvironment variable which is defined for
everybody. When you type samtools , the system tries each directory on the
search path one by one until it finds the corresponding executable.

Á which samtools (tells us where on disk the command bwa is located)

Á echo $PATH (displays the search path)

Á Note: the current directory ./ is NOT in the search path. If you need to run a
program located, say in your home directory, you need to precede it with ./,
for example, ./ my_program

Á Note: majority of executablesare NOT in search path –they need to be
launched using full path.
Á Visit https:// cbsu.tc.cornell.edu/lab/labsoftware.aspxto find out the path

to your application

https://cbsu.tc.cornell.edu/lab/labsoftware.aspx

Running applications

Ç How to run Java applications?

Ç Java programs usually come packaged in so-called jars

Ç Java program is launched by running the java virtual machine with the appropriate jar
as an argument

Ç Example:

java - Xmx6g ïjar GenomeAnalysisTK.jar - T UnifiedGenotyper \

ïR genome.fa - i aln.bam - o variants.vcf

Launch Java with
6GB of RAM

Run program from
this jar

Program options

ÇNeed to know what program(s) are relevant for your particular problem

ÇNeed to know what a given program does and how to use it

ÁVisit our software page http:// cbsu.tc.cornell.edu/lab/labsoftware.aspx

ÁLinks to manuals (all options explained, examples given, test data
available)

ÁSpecific hints on running in BioHPC Lab environment

ÇGetting quick help –run command without any options, or sometimes with ïh

or -ïhelp

ÁShould print a list of options with very short descriptions

Running applications

http://cbsu.tc.cornell.edu/lab/labsoftware.aspx

Running applications example: BLAST

Ç Input:

ÁFASTA file with query sequences
ÁWe will use 9 random human cDNA sequences

ÁDatabase of known sequences with which the query is to be
compared
ÁWe will use Swissprot set of amino acid sequences
ÁNeed to translate each cDNA query in 6 frames and align to

Swissprottemplates

ÇOutput
ÁText file describing hits

ÇProgram to run: blastall

Running applications example: BLAST
prepare input

Ç Create your local scratch directory (if not yet done) and a sub-directory blast_test

where this exercise will be run

mkdir / workdir / bukowski

cd / workdir / bukowski

mkdir blast_test

cd blast_test

Ç Copy file with query sequences to the exercise directory:

cp / shared_data / Linux_workshop / seq_tst.fa .

Ç Copy SwissprotBLAST database (we’ll make a separate directory for it)

mkdir databases

cp / shared_data / Linux_workshop / databases / swissprot * ./databases

Ç Verify that the files have been copied (use ls command)

File server

cbsum1c2b001 cbsum1c2b002 cbsum1c2b003

/workdir

/programs /shared_data

workstations

/home

/workdir /workdir

Network-attached – slow access

Directly attached – fast access

Local, visible from only
own workstation

Network
directories,
visible from all
workstations

Files frequently read and/or written (like input and output from an application being
run) must be located on local directories (on BioHPCLab machines: /workdir)

Reminder: local vs. network directories in BioHPC Lab

Ç In our specific case:

blastall - p blastx - b 1 - d ./databases/ swissprot - i seq_tst.fa >& run.log

Ç Very general syntax for launching applications:

<path_to_application_executable > [options] >& log

Path to
application
executable

Program options

Running applications example: BLAST
run the program

Ç Options used:
-p: type of search (blastx: compare 6-frame translations of DNA to AA sequences)
-b: number of database sequences to show alignments for
-d: path to database files
-i: input file (with query sequences in fastaformat)

Ç For full set of options, run
blastall | more

Screen
output
redirect

Running applications example: BLAST
running the program

blastall - p blastx - b 1 - d ./databases/ swissprot - i seq_tst.fa >& run.log

Ç The program will run for about 1 minute and then write the output to
the file run.log (STDOUT and STDERR streams combined)
Á Often output will appear in run.log gradually as a program is

running

Ç For larger queries, the run will take (much) longer and produce more
output…
Á 10,000 similar query sequences run using a similar command would

take about 24 hours

Run in the
background

Ç Running a program in the background

Á Normally, the program will run to completion (or crash), blocking the terminal
window

ÁBy putting an “&” at the end of command, we can send the program to the
background

Á Terminal prompt will return immediately –you will be able to continue
working

Á Good for long-running programs (most programs of interest…)
Á Can run multiple programs simultaneously if more then 1 processor

available on a machine (more about it later)
Á If all screen output redirected to disk, you may log out and leave the

program running (to make sure, use nohup before the command)

blastall [options] >& run.log &

Running a program, cnt.

Insert options, as previously

nohup blastall [options] >& run.log &

Keep running
after logout

Checking on your application: the top command
To exit –just type q

Running applications

Running applications, cnt.
Checking on your application:
the ps command –display info about all your processes –one of them should be
blastall

Process ID (PID) Running time

ps ïef | grep bukowski

Try man ps for more info about the ps command.

Running applications

Ç Stopping applications

ÅIf the application is running in the foreground (i.e., without “&”), it
can be stopped with Ctrl-C (press and hold the Ctrl key, then press
the “C” key) issued from the window (terminal) it is running in.

Å If the application is running in the background(i.e., with “&”), it
can be stopped with the kill command

kill - 9 <PID>

Where <PID> is the process id obtained rom the ps command. For
example, to terminate the blastall process form the previous
slide, we would use

kill - 9 18817

Try man kill for more info about the kill command.

Keeping a program running in the background after you log out or
disconnect

Option 1: Use nohup (as on previous slide). Of course, you can use
this also with options 1 and 2.

Option 2:Start a program in a terminal within a VNC session

Åthe session keeps running after VNC connection is killed
Åyou can reconnect to VNC session later

Option 3: Start a program within a screen window

Åall such windows keep running after you disconnect using
“Ctrl-a d” or by killing terminal window
Åyou can reconnect to the whole session later

Shell scripting

Script download.sh is sent as attachment to notification e-mail from the sequencing
facility

Copy download.sh to your Linux machine and run as a script

Example we already talked about: Downloading Illumina sequencing results

sh ./download.sh

Script for a complex task: SNP-calling
Example: given Illuminareads (in FASTQ format) and reference genome (FASTA), call SNPs

Alignment
(aln.sam)

Index genome
(bwa)

Reference BWA
index files

Align reads to
reference

(bwa)

genome.fa reads.fastq

Convert to
BAM format
(samtools)

Alignment
(aln.bam)

Get genotype lkhds
(samtools,bcftools)

Sorted
alignments
(aln_srt.bam)

Index BAM file
(samtools)

aln_srt.bam.bai

Sort
alignments
(samtools)

Raw genotyping
result
(var.raw.vcf)

SNP filtering
(bcftools)

Final SNPs
(var.flt.vcf)

Scripts: tools for executing complex tasks

ÇSequence of steps on previous slide is an example of a pipeline

ÁEach step corresponds to (typically) one instance of a program
or command

ÁInput files used in a step are (typically) generated in preceding
steps

ÁSome steps may run quite long (depends on amount of input
data and size of reference)

ÁExecuting each step in a terminal as a command is possible,
but tedious and hard to repeat (for example, with a new input
data)

ÁRemedy: write a shell script –a text file with commands

Shell script: a set of commands (and comments) in a text file

This is a fragment of
an actual script
implementing the
SNP-calling pipeline.

Run the whole script
as homework –see
the end of this
presentation

Shell scripts
Ç First line should be #!/bin/bash (indicates the shell used to interpret the script)
Á If absent, default shell will be used (bash)

ÇEverything in a line following “#” is a comment

Ç May include system commands (like cp , mv, mkdir , …) and commands launching
programs (blastall , bwa, samtools , …)

ÇCommands will be executed “in the order of appearance”

ÇLong lines can be broken with “\” character
ÁThe “\” character must be the last one in a line (no blank spaces after it)

Ç Script (e.g., my_script.sh , in the current directory) can be run as in the following:

bash ./my_script.sh >& my_script.log &

./my_script.sh >& my_script.log &

Ç The second command will work if the file my_script.sh is made executable with
the command

chmod u+x my_script.sh

Shell scripts: conditionals and loops

Exercise
(see end of slide deck)

simple SNP-calling pipeline

Objective: align (simulated) Illuminareads to D. Melanogaster genome using BWA
aligner and call variants using samtools

More about scripting

Multiple scripting tools available

Å shell (bash, tcsh–good for stitching together shell commands)

Åperl (very popular in biology, due to BioPerlmodule package)

Åpython (good numerical analysis tools –NumPy, SciPypackages)

Åawk (mostly text parsing and processing)

Å sed (mostly text parsing and processing)

ÅR (rich library of numerical analysis and statistical functions)

Using multiple processors

Recommended reading:
Efficient use of CPUs/cores on BioHPC Lab machines

http://cbsu.tc.cornell.edu/lab/doc/using_BioHPC_CPUs.pdf

http://cbsu.tc.cornell.edu/lab/doc/using_BioHPC_CPUs.pdf

machine

CPU

availa

ble

cores

available

cores

used

time

(hrs)

speedup

(in machine)

cbsulm10 4 64 64 0.931 27.506

cbsulm10 4 64 16 1.962 13.056

cbsulm10 4 64 1 25.619 1.000

cbsumm15 2 24 24 2.058 12.117

cbsumm15 2 24 12 2.593 9.616

cbsumm15 2 24 1 24.930 1.000

cbsum1c2b008 2 8 8 4.193 6.717

cbsum1c2b008 2 8 1 28.161 1.000

machine

CPU

available

cores

available

cores

used

time

(hrs)

speedup

(in machine)

cbsulm10 4 64 64 10.97 2.222

cbsulm10 4 64 16 24.37 1.000

cbsumm15 2 24 24 26.10 2.140

cbsumm15 2 24 12 55.85 1.000

Using BLAST to search swissprot database for matches of 10,000 randomly chosen
human cDNA sequences (swissprotis a good example of a small memory footprint).

Using BLAST to search nr database for matches of 2,000 randomly chosen human cDNA
sequences (nr is a good example of a large memory footprint).

Multiple processors

Ç It is VERY important to use multiple cores. BLAST on 64 cores takes only 0.931
hours (2K cDNA vs swissprot), the same run on a single core takes over 25 hours!

Ç Speedup is not directly proportional to the number of cores. Most often it is less
than expected, but still sufficiently large to justify the effort. 64 cores compared
to 1 core in swissprotexample give 27.5 speedup rate, much less than 64-fold,
but still large!

Ç Speedup depends on the machine (hardware), program (algorithm), and
parameters (e.g., nr vs swissport). When using nr database on cbsumm15 the
speedup between 12 and 24 cores is 2.14. For swissprot on the same machine it
is only 1.26.

Á It is often a good idea to run a short example first (if possible) on a subset of
data to figure out the optimal number of cores.

Multiple processors

Three ways to utilize multiple CPU cores on a machine:

Ç Using a given program’s built-in parallelization

Ç Simultaneously executing several programs in the
background

Ç Using a “driver” program to execute multiple tasks
in parallel

Multiple processors

Ç Take advantage of a program’s built-in parallelism invoked with an option
Á read documentation to find out if your program has this feature
Á Look for keywords like “multithreading”, “parallel execution”, “multiple
processors”, etc.

Multiple processors

A few examples:

blastall - a 8 [other options]

blast+ - num_threads 8 [other options]

tophat ïp 8 [other options]

cuffdiff ïp 8 [other options]

bwa ït 8 [other options]

bowtie ïp 8 [other options]

Remember speedup is not
perfect, so optimal number of
threads needs to be optimized
by trial and error using subset of
input data

Multiple processors

blastall ïa 2 - p blastx - b 1 - d ./databases/ swissprot - i seq_tst.fa

Ç >100% CPU indicates the program is multithreaded
Á Multiple threadswithin a single process rather than multiple processes

Multiple processors

Ç Simultaneously executing several programs in the background

Example: suppose we have to compress (gzip) several files. We can simply
launch multiple gzip commands in the background, without waiting for
previous ones to finish:

gzip file1 &

gzip file2 &

gzip file3 & Multiple processes
(1 thread in each)

Multiple processors
What if in the previous example, we had, say, 3000 files instead of just 3, but still only a
few processors?

Submitting all 3000 commands simultaneously in the background (in principle, it could be
done painlessly using a script) would not work too well, because:

Ç Each processor would have to switch between many processes –possible, but inefficient

ÇWith large number (and/or size) of files being processed, access to disk would become a
bottleneck (i.e., processes would spend most of their time competing for access to disk)

Ç Disk access (referred to as I/O –input/output) is always an issue for programs
which do a lot of reading/writing (like gzip)

Ç As a result, we would get no speedup, or (more likely) processing of all files in parallel
would take longer than processing them one by one

In situations like this (many short tasks and a few processors), we
need a special “driver” tool to efficiently distribute the tasks.

Multiple processors

Ç Using a “driver” program to execute multiple tasks in parallel

Example: create a file called (for example) TaskFile

(This is NOTa script, although it could be executed as such…)

….. (up to file3000)

This long file can be created, for example,
using the following shell script:

Multiple processors

/programs/bin/perlscripts/perl_fork_univ.pl TaskFile NP >& log &

Then run the command (assuming the TaskFile and all file* files are in the current dir)

Ç perl_fork_univ.pl is an CBSU in-house “driver” script (written in perl)

Ç It will execute tasks listed in TaskFile using up to NPprocessors
Á The first NPtasks will be launched simultaneously
Á The (NP+1) th task will be launched right after one of the initial ones completes
and a “slot” becomes available

Á The (NP+2) nd task will be launched right after another slot becomes available
Á…… etc., until all tasks are distributed

Ç Only up to NPtasks are running at a time (less at the end)

Ç All NPprocessors always kept busy (except near the end of task list) –Load Balancing

where NPis the number of processors to use (e.g., 10)

tophat - p 7 - o B_L1 - 1 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7073_C3AR7ACXX_B_L1 - 1_ATCACG_R1.fastq.gz \

fastq/2284_6063_7073_C3AR7ACXX_B_L1 - 1_ATCACG_R2.fastq.gz >& B_L1 - 1.log &

tophat - p 7 - o B_L1 - 2 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7076_C3AR7ACXX_B_L1 - 2_TGACCA_R1.fastq.gz \

fastq/2284_6063_7076_C3AR7ACXX_B_L1 - 2_TGACCA_R2.fastq.gz >& B_L1 - 2.log &

tophat - p 7 - o B_L1 - 3 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7079_C3AR7ACXX_B_L1 - 3_CAGATC_R1.fastq.gz \

fastq/2284_6063_7079_C3AR7ACXX_B_L1 - 3_CAGATC_R2.fastq.gz >& B_L1 - 3.log &

tophat - p 7 - o L_L1 - 1 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7074_C3AR7ACXX_L_L1 - 1_CGATGT_R1.fastq.gz \

fastq/2284_6063_7074_C3AR7ACXX_L_L1 - 1_CGATGT_R2.fastq.gz >& L_L1 - 1.log &

tophat - p 7 - o L_L1 - 2 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7077_C3AR7ACXX_L_L1 - 2_ACAGTG_R1.fastq.gz \

fastq/2284_6063_7077_C3AR7ACXX_L_L1 - 2_ACAGTG_R2.fastq.gz >& L_L1 - 2.log &

tophat - p 7 - o L_L1 - 3 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7080_C3AR7ACXX_L_L1 - 3_ACTTGA_R1.fastq.gz \

fastq/2284_6063_7080_C3AR7ACXX_L_L1 - 3_ACTTGA_R2.fastq.gz >& L_L1 - 3.log &

tophat - p 7 - o S_L1 - 1 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7075_C3AR7ACXX_S_L1 - 1_TTAGGC_R1.fastq.gz \

fastq/2284_6063_7075_C3AR7ACXX_S_L1 - 1_TTAGGC_R2.fastq.gz >& S_L1 - 1.log &

tophat - p 7 - o S_L1 - 2 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7078_C3AR7ACXX_S_L1 - 2_GCCAAT_R1.fastq.gz \

fastq/2284_6063_7078_C3AR7ACXX_S_L1 - 2_GCCAAT_R2.fastq.gz >& S_L1 - 2.log &

tophat - p 7 - o S_L1 - 3 -- transcriptome - index genome/transcriptome/ZmB73_5a_WGS \

-- no- novel - juncs genome/maize \

fastq/2284_6063_7081_C3AR7ACXX_S_L1 - 3_GATCAG_R1.fastq.gz \

fastq/2284_6063_7081_C3AR7ACXX_S_L1 - 3_GATCAG_R2.fastq.gz >& S_L1 - 3.log &

Mixed parallelization: running several simultaneous multi-threaded tasks (each
processing different data) on a large machine (here: 64-core)

Multiple processors

General guidelines

Ç Do not run more processes/threads than CPU cores available on the machine
Á For large number of tasks, use script perl_fork_univ.pl

Ç Run only as many simultaneous processes as will fit in memory (RAM)
Á when in doubt, run a single process first and check its memory requirement (for

example, using top)

Ç Programs heavy on I/O will compete for disk access if run in parallel –running too
many simultaneously is not a good idea

ÇIf available, use program’s own multithreading options

Ç Using subset of input data, try to determine number of CPU cores which (for a given
machine, input, and program options) gives the optimal speedup.

Exercises

Open your e-mail, find a message “Test Illumina distribution e-mail” with an attachment download.sh

Transfer the attachment file onto your Linux machine. You can do one of the following:

Option 1:
Å open the attachment in a text editor on your laptop and copy its contents to clipboard (using the

mouse)
Å in Linux machine terminal, open a new file (in a directory where you want your files downloaded to)

using a text editor of your choice (e.g., nanoor vi)
Å Paste the contents of the clipboard to the new file on Linux machine and save that file.

Option 2:
Å Save the attachment file on disk on your laptop
Å Use a file transfer technique of your choice (graphical sftp client, command-line scp) to transfer the

saved file from laptop to your Linux machine, to the directory where you want the fastqfiles to be
downloaded to. While transferring - use text mode, or run dos2unix (or mac2nix) after transferring.

Once the file download.sh is ready on the Linux machine:

Å Log in to the Linux machine (if not yet done so)
Å cd to the directory where the download.sh file has been deposited
Å Execute the file:

sh ./download.sh

Exercise: batch download of files from sequencing facility

Exercise: batch download of files from sequencing facility
(continued)

Once the download completes (should take about 1 second):

Å Verify that the files have ben downloaded and that they have correct sizes (the
same as in the notification e-ail)
Å Hint: use ls ïal command

Å Verify that MD5 sums of both files are the same as in the notification e-mail
Å Hint: run md5sum file_1.fastq.gz file_2.fastq.gz

Å Uncompressthe files
Å Hint: use gzip ïd file_1.fastq.gz file_2.fastq.gz

Å Count the sequences in each file
Å Hint: use wc ïl file_1.fastq file_2.fastq

Å Open each file in a text editor on Linux machine (nano, vi)

Exercise: simple SNP-calling pipeline
Objective: align (simulated) Illuminareads to D. Melanogaster genome using BWA
aligner and call variants using samtools

1. Copy the input data and shell script to your local working directory (replace my_id
with your login ID):

mkdir / workdir / my_id

cd / workdir / my_id

cp / shared_data / Linux_workshop /pipeline_example.tgz .

t ar ïxzvf pipeline_example.tgz

2. Using commands like more, tail, head, wc,… to examine the sequence files
(genome.fa –this is the reference genome; reads.fastq –these are the
simulated Illuminareads), e.g.,

Å grep ñ>ò genome.fa | wc (will count chromosomes in genome)
Å wc reads.fastq (the first number divided by 4 is the number

of reads)

Exercise: simple SNP-calling pipeline
3. Open the file pipeline.sh in a text editor of your choice. Examine the structure of
this file. Based on comments, identify commands corresponding to steps from slide
“Complex task example: SNP-calling”

4. Run the pipeline in the background, saving any screen output to a log file. The run
should take about 15 minutes.

cd / workdir / my_id

./pipeline.sh >& pipeline.log &

5. Use the top , ps , and ls commands to monitor the progress of the pipeline (processes
and files).

6. List the generated output files and confront with script pipeline.sh

7. Using a text editor, examine the log file pipeline.log . Can you identify messages
from individual commands in the script?

8. Using a text editor or text browsing commands (more, head, tail, etc) examine the
alignment file (aln.sam) and final variant output file var.flt.vcf . You may want to
look up the SAM and VCF format specifications (see http://samtools.sourceforge.net/ for
quick reference).

http://samtools.sourceforge.net/

