
Perl for Biologists

Session 1
March 4, 2015

Introduction

Jaroslaw Pillardy

Session 1: Introduction Perl for Biologists 1.2 1

Session 1: Introduction Perl for Biologists 1.2 2

• Perl for Biologists consists of 15 sessions, one every week, until June 10th

• Sessions will be taught by different Bioinformatics Facility staff members, the

speakers are listed on the workshop web pages

• Slides will be posted online before each session.

• Please feel free to contact us with any questions:

o Workshop coordinator: Jaroslaw Pillardy jp86@cornell.edu, Rhodes 623

o Each session’s speaker name is listed on session web page

o You can find us in the Bioinformatics Facility directory

http://cbsu.tc.cornell.edu/staff.aspx

• You can carry out practical exercises on your own machine/laptop/desktop or

use our BioHPC Lab workstations allocated for you. Machine allocations are

posted online on workshop pages

http://cbsu.tc.cornell.edu/ww/1/Default.aspx?wid=59

• No programming experience necessary.

Organization

Session 1: Introduction Perl for Biologists 1.2 3

• BioHPC Lab machines are reserved for you and available all the time between

now (March 4th) and June 21st (end of day June 20th)

• Please DO NOT use them for extensive calculations. It is fine to run on them

any “light” Perl-related calculations, create and test Perl programs etc.

• You can see your reservations after logging into BioHPC Lab website

http://cbsu.tc.cornell.edu/

• Helpful links:

o Lab Users guide http://cbsu.tc.cornell.edu/lab/use.aspx

o My reservations http://cbsu.tc.cornell.edu/lab/labresman.aspx

o Reset password http://cbsu.tc.cornell.edu//lab/labpassreset.aspx

• Useful books:

o “Learning Perl”, Randal Schwartz, Brain D Foy, Tom Phoenix

o “Beginning Perl for Bioinformatics”, James Tisdall

Organization

Session 1: Introduction Perl for Biologists 1.2 4

“Perl for Biologists” office hours will be held

each Tuesday 11am-1pm and 3pm-4pm in 623 Rhodes.

Please don’t hesitate to come if you have any questions or

want to further discuss course topics.

Organization

Session 1: Introduction Perl for Biologists 1.2 5

• The workshop has practical examples and exercises.

• You can follow examples during the lecture, or you can carry them out

afterwards.

• If you have any problems with them contact us or come to office hours

• The only way to learn programming is to try! Please do after lecture exercises

– they are always discussed at the beginning of the next session.

• You can practice Perl programming on any computer, including your Windows

or Mac laptop.

• We will focus on our Linux machines since it is most likely environment on

which you will run your future Perl programs.

• Therefore next few slides are “Linux primer”.

Organization

Text-based connection: ssh (Secure SHell)

GUI (graphical) connection: X-Windows or VNC
Please refer to the following document for more information about GUI connections

http://cbsu.tc.cornell.edu/lab/doc/Introduction_to_BioHPC_Lab_v2.pdf

Connecting to Linux b machines

Session 1: Introduction Perl for Biologists 1.2 6

Logging in to a Linux machine

�On any Linux machine, you need

�network name of the machine (e.g. cbsumm10.tc.cornell.edu)

� an account, i.e., user ID and password

�on your local computer: remote access software

(typically: ssh client)

�Linux is a multiple-access system: multiple users may be logged in

and operate on one machine at the same time

Session 1: Introduction Perl for Biologists 1.2 7

Logging in to a Linux machine

� Remotely from a PC via ssh client

� Install and configure remote access software (PuTTy).

�Use PuTTy to open a terminal window on the reserved

workstation using ssh protocol;

�You may open several terminal windows, if needed.

Session 1: Introduction Perl for Biologists 1.2 8

Logging in to a Linux machine

� Remotely from other Linux machine or Mac via native ssh client

� Launch the Mac’s terminal window. Type

ssh jarekp@cbsuwrkstX.tc.cornell.edu

(replace the “cbsuwrkstX” with the workstation that you just

reserved, and “jarekp” with your own user ID). Enter the lab

password when prompted.

�You may open several terminal windows, if needed, and log

in to the workstation from each of them.

Session 1: Introduction Perl for Biologists 1.2 9

Logging in to CBSU machines from outside of Cornell

Two ways to connect from outside:

� Install and run the CIT-recommended the VPN software

(http://www.it.cornell.edu/services/vpn) to join the Cornell network, then

proceed as usual

� Log in to cbsulogin.tc.cornell.edu (or cbsulogin2.tc.cornell.edu):

ssh jarekp@cbsulogin.tc.cornell.edu (using PuTTy or other ssh

client program)

Once logged in to cbsulogin, ssh further to your reserved machine

ssh jarekp@cbsuwrkst3.tc.cornell.edu

Backup login machine is cbsulogin2.tc.cornell.edu

https://cbsu.tc.cornell.edu/lab/doc/BioHPCLabexternal.pdfSession 1: Introduction Perl for Biologists 1.2 10

Terminal window

Session 1: Introduction Perl for Biologists 1.2 11

Terminal window

� User communicates with the machine via commands typed in the

terminal window

� Commands are interpreted by a program referred to as shell – an

interface between Linux and the user. We will be using the shell called

bash (another popular shell is tcsh).

� Typically, each command is typed in one line and “entered” by hitting

the Enter key on the keyboard.

� Commands deal with files and processes, e.g.,
� request information (e.g., list user’s files)

� launch a simple task (e.g., rename a file)

� start an application (e.g., Firefox web browser, BWA aligner, IGV viewer, …)

� stop an application

Session 1: Introduction Perl for Biologists 1.2 12

Logging out of a Linux machine

�While in terminal window, type exit or Ctrl-D - this will close

the current terminal window

Session 1: Introduction Perl for Biologists 1.2 13

How to access BioHPC Lab machines

http://cbsu.tc.cornell.edu/lab/doc/Introduction_to_BioHPC_Lab_v2.pdf

Slides from workshop “Introduction to BioHPC Lab”

http://cbsu.tc.cornell.edu/lab/userguide.aspx

BioHPC Lab User’s Guide

Session 1: Introduction Perl for Biologists 1.2 14

http://cbsu.tc.cornell.edu/lab/doc/Linux_workshop_Part1.pdf

http://cbsu.tc.cornell.edu/lab/doc/Linux_workshop_Part2.pdf

Slides from workshop “Linux for Biologists”

Session 1: Introduction Perl for Biologists 1.2 15

• Strongly typed vs. Loosely typed (context based)
all variables declared variables interpreted dynamically

C, C++, Java, C# Perl, Python, Visual Basic

• Scripted (interpreted) vs. Compiled
Executed “on the fly”, by line binary version of code executed

Perl, Visual Basic, Shell Python, Java, C# C, C++, Fortran

• Flat vs. Object oriented
No complex objects objects with properties and functions

C, Pascal Perl, Java, C#, C++

Programming languages

Session 1: Introduction Perl for Biologists 1.2 16

Perl is a loosely typed, interpreted, object-oriented programming language .

Loosely typed:

Easier to write, more flexible, no need for extra code to “cast” variables. VERY

EASY to make errors. Perl variables are typed dynamically based on context.

Interpreted:

More portable – will execute anywhere where interpreter is present IF

program does not require specific libraries and IF it doesn’t use system specific

commands. MUCH slower, automatic code optimization impossible.

Object-oriented:

Program can be compartmentalized with reusable code. Very powerful way to

solve problems. Slower.

Programming languages

Session 1: Introduction Perl for Biologists 1.2 17

• Easy to learn, fast to write (rapid prototyping), informal

• High-level – compact code, lots of useful functions

• Huge public library of code available that can be directly used

• Runs anywhere (with some caution)

• Flexible: useful for scripting, websites as well as large programs

• Perl is not fast, but excellent to “stich” together other programs – very

good for pipelines, task automation, interacting with OS.

• Perl can be easily used to perform various “in-between” functions like

process control, file/data control and conversion, string operations,

database operations and many more

Why Perl?

Session 1: Introduction Perl for Biologists 1.2 18

Programming cycle

EDIT / DESIGN VERIFY / COMPILE

RUN / TEST

Session 1: Introduction Perl for Biologists 1.2 19

Perl programs are scripts – text files interpreted line by line

Need to use TEXT editor to create and edit them

TEXT file is a file than uses only letters, numbers and common

symbols plus “new line” or “tab” special characters. NO

formatting or other binary code (MS Word vs. text example).

Plain ASCII characters: byte codes between 32 and 126

(byte => 8 bits, 0-255; 1 bit => smallest unit of information)

Modern text files can use special characters (e.g. ó or ö) and

symbols (e.g. β or §) with Unicode – and Perl can work with

them too. But they MUST be used with a TEXT editor (and

better yet – not used at all ☺)

Example: Notepad and Word

Session 1: Introduction Perl for Biologists 1.2 20

ASCII Table

Session 1: Introduction Perl for Biologists 1.2 21

ASCII Table

Session 1: Introduction Perl for Biologists 1.2 22

vi

• Available on all UNIX-like systems (Linux included), i.e., also on lab workstations (type vi or vi

file_name)

• Free Windows implementation available (once you learn vi, you can just use one editor

everywhere)

• Runs locally on Linux machine (no network transfers)

• User interface rather peculiar (no nice buttons to click, need to remember quite a few

keyboard commands instead)

• Some love it, some hate it

gvim

• Vi (see above) with a graphical interface – X-Windows needed. Windows version available.

nano

• Available on most Linux machines (our workstations included; type nano or nano file_name)

• Intuitive user interface. Keyboard commands-driven, but help always displayed on bottom bar

(unlike in vi).

• Runs locally on Linux machine (no network transfers during editing)

TEXT Editors

Session 1: Introduction Perl for Biologists 1.2 23

gedit (installed on lab workstations; just type gedit or gedit file_name to invoke)

• X-windows application – need to have X-ming running on client PC.

• May be slow on slow networks…

edit+ (http://www.editplus.com/)

• Commercial product

• Runs on a local machine (laptop) and transfers data to/from Linux workstation as needed

• Can browse Linux directories in a Windows-like file explorer

• May be slow on slow networks

• Some people swear by it

emacs (installed on lab workstations)

Xcode (Mac)

Notepad (Windows)

TEXT Editors

Session 1: Introduction Perl for Biologists 1.2 24

TEXT Files on Unix, Windows and Mac

End-of-line problem:

• Unix: \n CR 10 0x0a

• Windows \n\r CR+LF 10 13 0x0a 0x0d

• Mac (old) \r LF 13 0x0d

• Mac (new) \n CR 10 0x0a

Make sure files transferred from one system to another are properly converted

On Linux there is a set of nice utilities

unix2dos file_name

dos2unix file_name

unix2mac file_name

mac2unix file_name Example: Windows and Unix files on Windows

Session 1: Introduction Perl for Biologists 1.2 25

Vi basics
Opening a file:

vi my_reads.fastq (open the file my_reads.fastq in the current directory for editing; if the file does not exist, it will be created)

Command mode: typing will issue commands to the editor (rather than change text itself)

Edit mode: typing will enter/change text in the document

<Esc> exit edit mode and enter command mode (this is the most important key – use it whenever you are lost)

The following commands will take you to edit mode:

i enter insert mode

r single replace

R multiple replace

a move one character right and enter insert mode

o start a new line under current line

O start a new line above the current line

The following commands operate in command mode (hit <Esc> before using them)

x delete one character at cursor position

dd delete the current line

G go to end of file

1G go to beginning of file

154G go to line 154

$ go to end of line

1 go to beginning of line

:q! exit without saving

:w save (but not exit)

:wq! save and exit

Arrow keys: move cursor around (in both modes)

Session 1: Introduction Perl for Biologists 1.2 26

#!/usr/local/bin/perl

#this is my first Perl script

print "Hello, CBSU\n";

Look of a typical Perl script:

Session 1: Introduction Perl for Biologists 1.2 27

#!/usr/local/bin/perl

#this is my first Perl script

print "Hello, CBSU\n";

“shebang” notation – path to the program to interpret the script,

must be the first line and start with #!

anything starting with # is

a comment, unless it is #!

in the first line

function to print out text

statement ends with a

semicolon

Session 1: Introduction Perl for Biologists 1.2 28

#!/usr/local/bin/perl

#this is my first Perl script

print("Hello, CBSU\n");

“shebang” notation – path to the program to interpret the script,

must be the first line and start with #!

anything starting with # is

a comment, unless it is #!

in the first line

function to print out text

parentheses can be always

omitted, unless it changes

the meaning of expression

statement ends with

semicolon

Session 1: Introduction Perl for Biologists 1.2 29

Strings in Perl

• Sequence of characters – simple (ASCII) or extended (Unicode, wide)

• Special characters like NL or CR are represented as \xxxx (C notation)

o \n new line (NL)

o \t tab character

o \r return (CR)

o \x0a any character represented by hex number (0a = 10 = NL)

o \" double quotation

o \' single quotation

o \\ backslash

• Strings may be joined by ‘.’ operator

"string 1 " . "string 2" <=> "string 1 string 2"

• Some characters have special meaning in Perl, most prominently $ and @

o \$ {dollar}

o \@ {at}

Session 1: Introduction Perl for Biologists 1.2 30

Strings in Perl

• Single Quoted

Single quoted strings have LITERAL meaning – no special characters are recognized:

'string 1' string 1

'string 1\n' string 1{backslash}n

'\'string 1\' ' 'string 1'

' string 1\\1 ' string 1\1

• Double-Quoted

Double quoted strings do interpret special characters properly:

"string 1\n" string 1{new line}

"\"string 1\"" "string 1"

Session 1: Introduction Perl for Biologists 1.2 31

Perl installation and usage depends on the OS

External Perl libraries (modules) are accessible via CPAN

CPAN = Comprehensive Pearl Archive Network

You can download and use any of publicly available modules in

your programs

Session 1: Introduction Perl for Biologists 1.2 32

Perl on Linux

• Almost always installed as a part of the system, if not ask your system admin

• Usually it is /usr/bin/perl or /usr/local/bin/perl

• May be several versions installed, each with its own libraries and features

• Version can be checked with command

>perl -v

>/usr/bin/perl -v

• If you need a particular Perl installation in your program, write it into the first line

#!/usr/local/special/bin/perl

• If you need default Perl installation in your program, write it into the first line

#!/usr/bin/env perl

• Once invoked, Perl interpreter knows where its system-wide modules reside

Session 1: Introduction Perl for Biologists 1.2 33

Perl on Linux

Execute Perl program

• If the scripts has executable right

>./script_name.pl

>./script_name.pl >& output

• Regardless of executable right

>perl script_name

• Compile (verify) Perl program

>perl -c script_name

Make script executable:

>chmod u+x script_name

Session 1: Introduction Perl for Biologists 1.2 34

Perl on Linux

If you need custom modules located in a custom place:

• write it into first line

#!/usr/local/bin/perl -I /home/jarekp/my_modules

• set environmental variable

PERL5LIB=/home/jarekp/my_modules:/usr/another/path/lib; export PERL5LIB

• Execute explicitly with Perl interpreter and options

>perl -I /home/jarekp/my_modules my_script.pl

Session 1: Introduction Perl for Biologists 1.2 35

#!/usr/local/bin/perl

#this is my first Perl script

print "Hello, CBSU\n";

Lets write and execute the script NOW

Session 1: Introduction Perl for Biologists 1.2 36

Perl on Linux: CPAN

Two interfaces to CPAN

>cpan

>perl -MCPAN -e shell

Then you can type command

install modname - install module modname

r modname - report if upgrade is available

upgrade modname - upgrade

m modname - info about modname

Remember: there is a cpan for EACH Perl installation, make sure you are using

right one

Session 1: Introduction Perl for Biologists 1.2 37

Perl on Linux: CPAN

If you want to install a module for your own use, without being an admin:

Configure cpan (only first time)

>cpan

o conf makepl_arg INSTALL_BASE=~/myPERL_LIB

o conf mbuild_arg INSTALL_BASE=~/myPERL_LIB

o conf prefs_dir ~/myPERL_LIB/prefs

o conf commit

Install module(s)

>cpan

install modname

Set up environment so Perl knows where to look

PERL5LIB=/home/jarekp/myPERL_LIB/lib/perl5:$PERL5LIB

Export PERL5LIB

Need to reset CPAN:

o conf init

Session 1: Introduction Perl for Biologists 1.2 38

Perl on Linux: CPAN

Local configuration example

Configure cpan (only first time)

>cpan

o conf makepl_arg INSTALL_BASE=/home/jarekp/perl5

o conf mbuild_arg INSTALL_BASE=/home/jarekp/perl5

o conf prefs_dir /home/jarekp/perl5/prefs

o conf commit

Set up environment so Perl knows where to look: edit /home/jarekp/.bashrc and add

the following

export PERL_LOCAL_LIB_ROOT="$PERL_LOCAL_LIB_ROOT:/home/jarekp/perl5";

export PERL_MB_OPT="--install_base /home/jarekp/perl5";

export PERL_MM_OPT="INSTALL_BASE=/home/jarekp/perl5";

export PERL5LIB="/home/jarekp/perl5/lib/perl5:$PERL5LIB";

export PATH="/home/jarekp/perl5/bin:$PATH";

Session 1: Introduction Perl for Biologists 1.2 39

Perl on Windows

Recommended Perl is ActivePerl: http://www.activestate.com/activeperl

Download binary and install – choose free version.

“shebang” line of any script is ignored on Windows

Windows recognizes Perl scripts by extension .pl

There is a nice GUI to CPAN

Example of script and GUI

Session 1: Introduction Perl for Biologists 1.2 40

Perl on Mac

Similarly as on Linux it comes preinstalled on OS X.

All Linux information should apply.

Session 1: Introduction Perl for Biologists 1.2 41

#!/usr/local/bin/perl

use warnings;

use Bio::Perl;

#this is my first Perl script

print "Hello, CBSU\n";

A bit more complicated script

Session 1: Introduction Perl for Biologists 1.2 42

use ModuleName;
Declares usage of Perl module “ModuleName”, includes all proper definitions

use warnings;
Declares use of “warnings” module – Perl will now report any place it thinks is

ambiguous or suspicious: same as >perl –w

use Bio::Perl;
Declares use of BioPerl module – more details later

Session 1: Introduction Perl for Biologists 1.2 43

“use” statement can be declared as a parameter of Perl interpreter

>perl -MBio::Perl

… and then something can be executed …

>perl -MBio::Perl -e "print \"OK\n\";"

If Bio::Perl is installed it will print "OK", otherwise an error will occur.

Easy way to check if a module is installed.

Example: CPAN installation of Template::HTML

Session 1: Introduction Perl for Biologists 1.2 44

1. Write a Perl program that prints your name and e-mail in the following format

in one line:

first_name last_name <emailaddr@domain.edu>

2. Are the following modules installed on your BioHPC Lab machine?

Net::Ping

XML::Special

Net::Telnet

CBSU::HDF5

Exercises

