Perl for Biologists

Session 1
March 4, 2015

Introduction

Jaroslaw Pillardy

Organization

Perl for Biologists consists of 15 sessions, one every week, until June 10t

Sessions will be taught by different Bioinformatics Facility staff members, the
speakers are listed on the workshop web pages

Slides will be posted online before each session.

Please feel free to contact us with any questions:
o Workshop coordinator: Jaroslaw Pillardy jp86@cornell.edu, Rhodes 623
o Each session’s speaker name is listed on session web page
o You can find us in the Bioinformatics Facility directory
http://cbsu.tc.cornell.edu/staff.aspx

You can carry out practical exercises on your own machine/laptop/desktop or
use our BioHPC Lab workstations allocated for you. Machine allocations are
posted online on workshop pages
http://cbsu.tc.cornell.edu/ww/1/Default.aspx?wid=59

No programming experience necessary.

Organization

* BioHPC Lab machines are reserved for you and available all the time between
now (March 4t) and June 215t (end of day June 20t")

* Please DO NOT use them for extensive calculations. It is fine to run on them
any “light” Perl-related calculations, create and test Perl programs etc.

* You can see your reservations after logging into BioHPC Lab website
http://cbsu.tc.cornell.edu/

e Helpful links:
o Lab Users guide http://cbsu.tc.cornell.edu/lab/use.aspx
o My reservations http://cbsu.tc.cornell.edu/lab/labresman.aspx
o Reset password http://cbsu.tc.cornell.edu//lab/labpassreset.aspx

* Useful books:
o “Learning Perl”, Randal Schwartz, Brain D Foy, Tom Phoenix
o “Beginning Perl for Bioinformatics”, James Tisdall

Session 1: Introduction Perl for Biologists 1.2

Organization

“Perl for Biologists” office hours will be held
each Tuesday 11lam-1pm and 3pm-4pm in 623 Rhodes.

Please don’t hesitate to come if you have any questions or
want to further discuss course topics.

Organization

The workshop has practical examples and exercises.

You can follow examples during the lecture, or you can carry them out
afterwards.

If you have any problems with them contact us or come to office hours

The only way to learn programming is to try! Please do after lecture exercises
— they are always discussed at the beginning of the next session.

You can practice Perl programming on any computer, including your Windows
or Mac laptop.

We will focus on our Linux machines since it is most likely environment on
which you will run your future Perl programs.

Therefore next few slides are “Linux primer”.

Connecting to Linux b machines

Text-based connection: ssh (Secure SHell)

GUI (graphical) connection: X-Windows or VNC

Please refer to the following document for more information about GUI connections
http://cbsu.tc.cornell.edu/lab/doc/Introduction to BioHPC Lab v2.pdf

Logging in to a Linux machine

On any Linux machine, you need
» network name of the machine (e.g. cbosumm10.tc.cornell.edu)
» an account, i.e., user ID and password
» on your local computer: remote access software
(typically: ssh client)

Linux is a multiple-access system: multiple users may be logged in
and operate on one machine at the same time

Logging in to a Linux machine

(J Remotely from a PC via ssh client
» Install and configure remote access software (PuTTy).

» Use PuTTy to open a terminal window on the reserved
workstation using ssh protocol;

» You may open several terminal windows, if needed.

Logging in to a Linux machine

(J Remotely from other Linux machine or Mac via native ssh client

» Launch the Mac’s terminal window. Type

ssh jarekp@cbsuwrkstX.tc.cornell.edu

(replace the “cbsuwrkstX” with the workstation that you just
reserved, and “jarekp” with your own user ID). Enter the lab
password when prompted.

» You may open several terminal windows, if needed, and log
in to the workstation from each of them.

Logging in to CBSU machines from outside of Cornell

Two ways to connect from outside:

[Install and run the CIT-recommended the VPN software

(http://www.it.cornell.edu/services/vpn) to join the Cornell network, then
proceed as usual

M Log in to cbsulogin.tc.cornell.edu (or cbsulogin2.tc.cornell.edu):

ssh jarekp@cbsulogin.tc.cornell.edu (using PuTTy or other ssh
client program)

Once logged in to cbsulogin, ssh further to your reserved machine

ssh jarekp@cbsuwrkst3.tc.cornell.edu

Backup login machine is cbsulogin2.tc.cornell.edu

httpss//cbsucte.cornell.edu/lab/doe/BioHPELabexternal.pdf

Terminal window

B jarekp@cbsumlc2b01d:~

login as: jarekp
jarekp@cbsumlc2b0l4's password:
Last login: Fri Jun 14 10:59:0&6 2013

from clownfish.tc.cornell.edu
[jarekp@cbsumlc2bols ~15

Session 1: Introduction Perl for Biologists 1.2

11

Terminal window

O User communicates with the machine via commands typed in the
terminal window

» Commands are interpreted by a program referred to as shell —an
interface between Linux and the user. We will be using the shell called

bash (another popular shell is tcsh).

» Typically, each command is typed in one line and “entered” by hitting
the Enter key on the keyboard.

» Commands deal with files and processes, e.g.,

= request information (e.g., list user’s files)
* |aunch a simple task (e.g., rename a file)
= start an application (e.g., Firefox web browser, BWA aligner, IGV viewer, ...)

= stop an application

Logging out of a Linux machine

dWhile in terminal window, type exit or Ctrl-D - this will close
the current terminal window

How to access BioHPC Lab machines

BioHPC Lab User’s Guide
http://cbsu.tc.cornell.edu/lab/userguide.aspx

Slides from workshop “Introduction to BioHPC Lab”
http://cbsu.tc.cornell.edu/lab/doc/Introduction to BioHPC Lab v2.pdf

Slides from workshop “Linux for Biologists”

http://cbsu.tc.cornell.edu/lab/doc/Linux workshop Partl.pdf
http://cbsu.tc.cornell.edu/lab/doc/Linux workshop Part2.pdf

Session 1: Introduction Perl for Biologists 1.2

14

Programming languages

Strongly typed VS. Loosely typed (context based)
all variables declared variables interpreted dynamically

C, C++, Java, C# Perl, Python, Visual Basic

Scripted (interpreted) VS. Compiled

Executed “on the fly”, by line binary version of code executed
Perl, Visual Basic, Shell Python, Java, C# C, C++, Fortran

Flat VS. Object oriented

No complex objects objects with properties and functions

C, Pascal Perl, Java, C#, C++

Programming languages

Perl is a loosely typed, interpreted, object-oriented programming language .

Loosely typed:
Easier to write, more flexible, no need for extra code to “cast” variables. VERY
EASY to make errors. Perl variables are typed dynamically based on context.

Interpreted:
More portable — will execute anywhere where interpreter is present IF
program does not require specific libraries and IF it doesn’t use system specific
commands. MUCH slower, automatic code optimization impossible.

Object-oriented:
Program can be compartmentalized with reusable code. Very powerful way to
solve problems. Slower.

Why Perl?

Easy to learn, fast to write (rapid prototyping), informal
High-level — compact code, lots of useful functions

Huge public library of code available that can be directly used
Runs anywhere (with some caution)

Flexible: useful for scripting, websites as well as large programs

Perl is not fast, but excellent to “stich” together other programs — very
good for pipelines, task automation, interacting with OS.

Perl can be easily used to perform various “in-between” functions like
process control, file/data control and conversion, string operations,
database operations and many more

Session 1: Introduction

Programming cycle

Perl for Biologists 1.2

18

Perl programs are scripts — text files interpreted line by line
Need to use TEXT editor to create and edit them

TEXT file is a file than uses only letters, numbers and common
symbols plus “new line” or “tab” special characters. NO
formatting or other binary code (MS Word vs. text example).

Plain ASCII characters: byte codes between 32 and 126
(byte => 8 bits, 0-255; 1 bit => smallest unit of information)

Modern text files can use special characters (e.g. 6 or 6) and
symbols (e.g. B or §) with Unicode — and Perl can work with
them too. But they MUST be used with a TEXT editor (and
better yet — not used at all ©)

ASCII Table

Dec HxOct Char Dec Hx Oct Html Chr [Dec Hy ©ct Himl Chr| Dec Hx Oct Html Chr
0 0 000 NOL frmll) 32 20 040 Z: Space| 64 40 100 s#6d; [96 60 140 `
1l 1 001 30H (start of heading) 33 zZ1 041 =#33; ! G5 41 101 A & a7 6l 141 =#97; &
2 2 002 3Tk [(start of text) 34 22 042 " 7 ge 42 102 «#66; B 08 52 142 b: b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C 99 /3 143 c C
4 4 004 EOT {end of transmission) 36 24 044 $ 3 68 44 104 «#68; D (100 64 144 d d
5 5 005 ENQ (enquiry) 37 25 045 % % 69 45 105 «#69; E |10l 65 145 &«#101; &
6 6 006 ACE {acknowleddge) 38 26 046 &! & 70 46 106 «#70: F (102 66 14f f €
7 7 007 BEL (hell) 39 27 047 ' ! T1 47 107 «#71; G (103 &7 147 g O
& & 010 B3 ({backspace) 40 28 050 (| 72 45 110 «#72; H (104 68 150 h h
9 9 011 TAE {horizontal tab) 4] zZ9 051 =#41;) 73 49 111 &«#73:; I (105 &9 151 &«#l05; 1

10 & 012 LF (NL line feed, new line)| 4z Z& 052 &#d2; * 74 44 112 «#74; J |106 64 152 j]

11 B 013 ¥T (wertical tahb) 43 ZB 053 + + 75 4B 113 «#75: K (107 6B 153 &«#107: k

1z € 014 FF (NP form feed, new page)| 44 ZC 054 ,: | 76 4AC 114 L: L (108 &C 154 &#l05; 1

13 D 015 CER (carriage return) 45 2D 055 - - 77 4D 115 «#77: M |109 6D 155 m I

14 E 0le 30 (shift out) ds ZE 056 s#d6: . 75 4AE 116 N N (110 6E 156 l0; 1

15 F 017 3T (shift in) 47 ZF 057 =#47; F 79 4F 117 O: 0 [111 &6F 157 l1; o

16 10 020 DLE (data link escape) 43 30 060 ǅ: 0 g0 50 120 =#30: P |11Z 70 la0 &#l12; p

17 11 021 DC1 (dewvice control 1) 49 31 06l &=#49:; 1 g1 51 121 &«#51; 0 (113 71 1ol =#1l13:; d

18 12 022 DCZ (dewice control 2) 50 32 062 2 2 B2 52 12Z «#32: B |114 72 laz r ¢

19 13 023 DC3 [(device control 3) 51 33 063 3 3 83 53 123 «#583; 5 (115 73 loa3 l5; =

20 14 024 DC4 (dewice control 4) 52 34 064 4: 4 g4 54 124 s#34; T |116 74 1pd &#lle; ©

21 15 025 NAE [(negative acknowledge) 53 35 065 &=#53; 5 G5 55 125 # T |117 75 165 &«#117: 1

22 16 026 STN (synchronous idle) 54 36 066 6: 6 g6 Be 126 P: V |118 76 loa v W

23 17 027 ETE (end of trans. block) 55 37 067 7: 7 g7 57 127 «#87; W (119 77 1la7 l9; w

24 18 030 CAN (cancel) 56 38 070 8:7 G 88 58 130 & X |1z20 78 170 &#l120; X

25 19 031 EM (end of medium) 57 39 071 =#57:; 9 89 59 131 «#59; T (121 79 171 y:; ¥

26 1A 032 SUE (substitute) 58 3A 072 5 @ a0 Bh 132 Z £ |122 7A 172 &#liZ; E

27 1B 033 E3C [escape]) 59 3B 073 ; 9l BB 133 &«#91: [(123 7B 173 {: |

28 1C 034 F3 (file separator) 60 3C 074 < < QZ 5C 134 \: |124 7C 174 &#l24;

29 1D 035 G5 [(group sSeparatokr) 61 3D 075 =#o6l; = 93 ED 135 &«#93:] (125 70 175 }:)

30 1E 036 B3 (record separator) G2 3E 076 >: - 94 EE 136 ^ ~ |12 7E 176 &#lZ6; ~

31 1F 037 U% (unit separator) 63 3F 077 «#63; 7 95 EF 137 _:; [127 7F 177 «#127; DEL

Source: www.LookupTables .com

12%
129
130
131
132
133
134
135
136
137
135
139
140
141
142
143

Session 1: Introduction

[I T R A

I T - - T = T

2 :H

144
145
146
147
145
149
150
151
152
153
154
155
156
157
155
159

':'?'EHFEW‘

[H

S, H‘j L1 iF I::: D: 3 o

160
161
162
163
164
165
166
167
16&
169
170
171
174
173
174
175

-

- = TR R

o

s
2

o

]

176
177
175
179
130
151
154
123
154
185
136
157
155
159
190
191

Perl for Biologists 1.2

ASCII Table

Sl o == o L

= =

L =

194
193
194
195
196
197
19%
199
200
201
202
203
204
205
206
207

—

= m

F

I =0

-
=l

F

I+ ==

0%
208
210
211
414
213
214
215
216
217
d1&
219
220
241
224
2443

E

224
245
226
227
e
2429
230
431
432
433
434
435
436
437
438
439

4 =F=3 9 r 45 A

e v B -

LI - O T = T B = = B s I By B~

(i

240
241

242
243
244
245
246
247
4=
249
430
251

452
453
434
455

A v H

L

i

Source: www.lLookupTables.com

21

TEXT Editors

vi

* Available on all UNIX-like systems (Linux included), i.e., also on lab workstations (type vi or vi
file_name)

* Free Windows implementation available (once you learn vi, you can just use one editor
everywhere)

* Runs locally on Linux machine (no network transfers)

* User interface rather peculiar (no nice buttons to click, need to remember quite a few
keyboard commands instead)

* Some love it, some hate it

gvim

* Vi (see above) with a graphical interface — X-Windows needed. Windows version available.

nano

Available on most Linux machines (our workstations included; type nano or nano file_name)
Intuitive user interface. Keyboard commands-driven, but help always displayed on bottom bar
(unlike in vi).

Runs locally on Linux machine (no network transfers during editing)

Session 1: Introduction Perl for Biologists 1.2 22

TEXT Editors

gedit (installed on lab workstations; just type gedit or gedit file_name to invoke)
* X-windows application — need to have X-ming running on client PC.
 May be slow on slow networks...

edit+ (http://www.editplus.com/)

e Commercial product

* Runson alocal machine (laptop) and transfers data to/from Linux workstation as needed
* Can browse Linux directories in a Windows-like file explorer

* May be slow on slow networks

 Some people swear by it

emacs (installed on lab workstations)
Xcode (Mac)

Notepad (Windows)

Session 1: Introduction Perl for Biologists 1.2 23

TEXT Files on Unix, Windows and Mac

End-of-line problem:

* Unix: \n CR 10 0x0a
* Windows \n\r CR+LF 10 13 Ox0a 0x0d
* Mac (old) \r LF 13 0x0d
* Mac (new) \n CR 10 Ox0a

Make sure files transferred from one system to another are properly converted

On Linux there is a set of nice utilities
unix2dos file_name
dos2unix file_name
unix2mac file_name

mac2unix file_name

Vi basics
Opening a file:
vi my_reads.fastq (open the file my_reads.fastq in the current directory for editing; if the file does not exist, it will be created)

Command mode: typing will issue commands to the editor (rather than change text itself)
Edit mode: typing will enter/change text in the document

<Esc> exit edit mode and enter command mode (this is the most important key — use it whenever you are lost)

The following commands will take you to edit mode:
i enter insert mode

r single replace

R multiple replace

a move one character right and enter insert mode
o start a new line under current line

(0] start a new line above the current line

The following commands operate in command mode (hit <Esc> before using them)
X delete one character at cursor position

dd delete the current line

G go to end of file

1G go to beginning of file

154G go to line 154

S go to end of line

1 go to beginning of line

:q! exit without saving

W save (but not exit)

:wq! save and exit

Arrow keys: move cursor around (in both modes)

Session 1: Introduction Perl for Biologists 1.2

25

Look of a typical Perl script:

#!/usr/local/bin/perl
#this i1is my first Perl script

print "Hello, CBSU\n";

Session 1: Introduction

Perl for Biologists 1.2

26

“shebang” notation — path to the program to interpret the script,
must be the first line and start with #!

\N#!/usr/local/bin/perl
#this i1is my first Perl script

pr nt "Hello, CBSU\n";K

statement ends with a
semicolon
anything starting with # is
a comment, unless it is #!
in the first line

function to print out text

Session 1: Introduction Perl for Biologists 1.2 27

“shebang” notation — path to the program to interpret the script,
must be the first line and start with #!

parentheses can be always
omitted, unless it changes
the meaning of expression

\N#!/usr/local/bin/perl

#this is my £] ript

prir int("Hello, CBSU\n");

N
\ statement ends with

semicolon
anything starting with # is
a comment, unless it is #!
in the first line

function to print out text

Session 1: Introduction Perl for Biologists 1.2 28

Strings in Perl

* Sequence of characters — simple (ASCII) or extended (Unicode, wide)

» Special characters like NL or CR are represented as \xxxx (C notation)

o \n new line (NL)

o \t tab character

o \r return (CR)

o \x0a any character represented by hex number (0a = 10 = NL)
o \" double quotation

o \' single quotation

o \\ backslash

* Strings may be joined by ‘.’ operator
"string 1" . "string 2" <=> "string 1 string 2"

* Some characters have special meaning in Perl, most prominently $ and @
o \S {dollar}

o \@ {at}

Strings in Perl
* Single Quoted

Single quoted strings have LITERAL meaning — no special characters are recognized:

'string 1' string 1

'string 1\n' string 1{backslash}n
"\'string 1\'" 'string 1'

'string 1\\1' string 1\1

* Double-Quoted
Double quoted strings do interpret special characters properly:

"string 1\n" string 1{new line}
"\"string 1\"" "string 1"

Perl installation and usage depends on the OS

External Perl libraries (modules) are accessible via CPAN

CPAN = Comprehensive Pearl Archive Network

You can download and use any of publicly available modules in
your programs

Perl| on Linux

Almost always installed as a part of the system, if not ask your system admin
Usually it is /usr/bin/perl or /usr/local/bin/perl

May be several versions installed, each with its own libraries and features
Version can be checked with command

>perl -v

>/usr/bin/perl -v

If you need a particular Perl installation in your program, write it into the first line
#!/usr/local/special/bin/perl

If you need default Perl installation in your program, write it into the first line
#!/usr/bin/env perl

Once invoked, Perl interpreter knows where its system-wide modules reside

Perl| on Linux

Execute Perl program

Make script executable:
e If the scripts has executable right >chmod u+x script_name

>./script_name.pl

>./script_name.pl >& output

* Regardless of executable right

>perl script_name

 Compile (verify) Perl program

>perl -c script_name

Perl| on Linux

If you need custom modules located in a custom place:

e write it into first line

#!/usr/local/bin/perl -I /home/jarekp/my_modules

* set environmental variable

PERL5LIB=/home/jarekp/my_modules:/usr/another/path/lib; export PERL5LIB

* Execute explicitly with Perl interpreter and options

>perl -1 /home/jarekp/my_modules my_script.pl

Lets write and execute the script NOW

#!/usr/local/bin/perl
#this i1is my first Perl script

print "Hello, CBSU\n";

Session 1: Introduction Perl for Biologists 1.2

35

Perl on Linux: CPAN
Two interfaces to CPAN
>cpan
>perl -MCPAN -e shell

Then you can type command

install modname - install module modname

r modname - report if upgrade is available
upgrade modname - upgrade

m modname - info about modname

Remember: there is a cpan for EACH Perl installation, make sure you are using
right one

Perl on Linux: CPAN

If you want to install a module for your own use, without being an admin:
Configure cpan (only first time)

>cpan

o conf makepl_arg INSTALL_BASE=~/myPERL_LIB
o conf mbuild_arg INSTALL_BASE=~/myPERL_LIB
o conf prefs_dir ~/myPERL_LIB/prefs

o conf commit

Install module(s) Need to reset CPAN:

>cpan o confinit

install modname
Set up environment so Perl knows where to look

PERL5LIB=/home/jarekp/myPERL_LIB/lib/perl5:SPERL5LIB
Export PERLSLIB

Perl on Linux: CPAN

Local configuration example
Configure cpan (only first time)

>cpan

o conf makepl_arg INSTALL_BASE=/home/jarekp/perl5
o conf mbuild_arg INSTALL_BASE=/home/jarekp/perl5
o conf prefs_dir /home/jarekp/perl5/prefs

o conf commit

Set up environment so Perl knows where to look: edit /home/jarekp/.bashrc and add
the following

export PERL_LOCAL_LIB_ROOT="SPERL_LOCAL_LIB_ROOT:/home/jarekp/perl5";
export PERL_MB_OPT="--install_base /home/jarekp/perl5";

export PERL_MM_OPT="INSTALL BASE=/home/jarekp/perl5";

export PERL5LIB="/home/jarekp/perl5/lib/perl5:SPERL5LIB";

export PATH="/home/jarekp/per|5/bin:SPATH";

Perl on Windows

Recommended Perl is ActivePerl: http://www.activestate.com/activeperl

Download binary and install — choose free version.

“shebang” line of any script is ignored on Windows

Windows recognizes Perl scripts by extension .pl

There is a nice GUI to CPAN

Session 1: Introduction Perl for Biologists 1.2

39

Perl on Mac

Similarly as on Linux it comes preinstalled on OS X.

All Linux information should apply.

Session 1: Introduction Perl for Biologists 1.2

40

A bit more complicated script

#!/usr/local/bin/perl

use warnings;
use Bio::Perl;

#this is my first Perl script

print "Hello, CBSU\n";

Session 1: Introduction Perl for Biologists 1.2

41

use ModuleName;
Declares usage of Perl module “ModuleName”, includes all proper definitions

use warnings;

Declares use of “warnings” module — Perl will now report any place it thinks is
ambiguous or suspicious: same as >perl —w

use Bio: :Perl;
Declares use of BioPerl module — more details later

Session 1: Introduction Perl for Biologists 1.2

42

“use” statement can be declared as a parameter of Perl interpreter

>perl -MBio::Perl

... and then something can be executed ...

>perl -MBio::Perl -e "print \"OK\n\";"
If Bio::Perl is installed it will print "OK", otherwise an error will occur.

Easy way to check if a module is installed.

Exercises

1. Write a Perl program that prints your name and e-mail in the following format
in one line:
first_name last_name <emailaddr@domain.edu>

2. Are the following modules installed on your BioHPC Lab machine?

Net::Ping
XML::Special
Net::Telnet
CBSU::HDF5

