
Perl for Biologists

Session 2
March 11, 2015

Constants, variables and

functions

Jaroslaw Pillardy

Session 2: Constants, variables and functions Perl for Biologists 1.2 1

Session 2: Constants, variables and functions Perl for Biologists 1.2 2

#!/usr/local/bin/perl

use warnings;

#this is my first Perl script

print "Hello, CBSU\n";

"shebang" notation – path to the program to interpret the script,

must be the first line and start with #!

anything starting with # is

a comment, unless it is #!

in the first line function to print out text

statement ends with a

semicolon

using external

module/library

Session 2: Constants, variables and functions Perl for Biologists 1.2 3

#!/usr/local/bin/perl

use warnings;

#this is my first Perl script

print("Hello, CBSU\n");

"shebang" notation – path to the program to interpret the script,

must be the first line and start with #!

anything starting with # is

a comment, unless it is #!

in the first line function to print out text

statement ends with a

semicolon

using external

module/library

parentheses can be always

omitted, unless it changes

the meaning of expression

Session 2: Constants, variables and functions Perl for Biologists 1.2 4

1. Write a Perl program that prints your name and e-mail in the following format

in one line:

first_name last_name <emailaddr@domain.edu>

/home/jarekp/perl_01/exercise1.pl

#!/usr/local/bin/perl

print 'Jarek Pillardy <jp86@cornell.edu>';

print "\n";

print "Jarek Pillardy <jp86\@cornell.edu>\n";

2. Are the following modules installed on your BioHPC Lab machine?

Net::Ping

XML::Special

Net::Telnet

CBSU::HDF5

>perl -MNet::Ping -e "print \"OK\n\ "; "

Session 1 Exercises Review

Session 2: Constants, variables and functions Perl for Biologists 1.2 5

Variable – a name for a block in computer memory holding

something

Scalar variable – a variable containing only one element

Expression representing a constant value is a literal

Scalar Variables

Session 2: Constants, variables and functions Perl for Biologists 1.2 6

Scalar variables in Perl always start with $

String variable:

$variable = "Jarek Pillardy";

Scalar Variables

literal with a value to assign

assignment operator

variable

name

Session 2: Constants, variables and functions Perl for Biologists 1.2 7

Scalar variables in Perl always start with $

Numerical variable:

$variable = 55;

Scalar Variables

literal with a value to assign

assignment operator

variable

name

Session 2: Constants, variables and functions Perl for Biologists 1.2 8

Variable names can contain letters, numbers and underscores

Case sensitive

Cannot start from number (digit)

$JarekPillardy

$jarekpillardy #different than above

$jp86_cornell_edu

$123jarek � INVALID, starts with a number

$jp86@cornell.edu � INVALID, contains @ and .

Session 2: Constants, variables and functions Perl for Biologists 1.2 9

#!/usr/local/bin/perl

$svar = "\"Hello, CBSU\"\n";

$nvar = 55.55;

print $svar;

print $nvar;

print "\n";

script1.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 10

#!/usr/local/bin/perl

$svar = "\"Hello, CBSU\"\n";

$nvar = 55.55;

print $svar;

print $nvar;

print "\n";

script1.pl

All scripts for this session can be copied from

/home/jarekp/perl_02

in this case /home/jarekp/perl_02/script1.pl

>cp /home/jarekp/perl_02/script1.pl .

copies this script to your current directory

Session 2: Constants, variables and functions Perl for Biologists 1.2 11

#!/usr/local/bin/perl

$svar = "\"Hello, CBSU\"\n";

$nvar = 55.55;

print $svar;

print $nvar;

print "\n";

script1.pl

[jarekp@cbsum1c2b014 perl_02]$ perl script1.pl

"Hello, CBSU"

55.55

[jarekp@cbsum1c2b014 perl_02]$

Session 2: Constants, variables and functions Perl for Biologists 1.2 12

#!/usr/local/bin/perl

$svar = "\"Hello, CBSU\"\n";

$nvar = 55.55;

print "$svar nvar=$nvar\n";

script2.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 13

#!/usr/local/bin/perl

$svar = "\"Hello, CBSU\"\n";

$nvar = 55.55;

print "$svar nvar=$nvar\n";

script2.pl

[jarekp@cbsum1c2b014 perl_02]$ perl script2.pl

"Hello, CBSU"

nvar=55.55

[jarekp@cbsum1c2b014 perl_02]$

Session 2: Constants, variables and functions Perl for Biologists 1.2 14

Can be assigned both single quoted or double quoted strings

$variable1 = "Hello, CBSU\n";

$variable2 = 'Hello, CBSU\n';

String Variables

Session 2: Constants, variables and functions Perl for Biologists 1.2 15

String operators:

. Concatenation

$str1 = "Jarek" . " " . "Pillardy";

$str1 = "Jarek Pillardy"; #same as above

x Repetition

$str2 = "AAGT" x 3;

$str2 = "AAGTAAGTAAGT"; #same as above

Session 2: Constants, variables and functions Perl for Biologists 1.2 16

Can be a floating point, integer, or non-decimal number

$variable1 = 1000000; #integer

$variable1 = 1_000_000; #integer, _ ignored

$variable1 = 1e+6; #integer

$variable1 = 2.6182818285e-3; #floating point

$variable1 = 0xfff34g; #hexadecimal

$variable1 = 02351; #octal

$variable1 = 0b101101; #binary

ALL numerical variables are stored the same way in Perl

– as double precision floating point numbers

Numerical Variables

Session 2: Constants, variables and functions Perl for Biologists 1.2 17

$variable1 = 1000000 + 222;

$variable1 = 1000000 * 222;

$variable1 = 1000000 - 222;

$variable1 = 1000000 / 222;

$variable1 = 121**3; #power, =1771561

$variable1 = 1000000 % 222; #modulus, =112

Numerical Operators

Session 2: Constants, variables and functions Perl for Biologists 1.2 18

abs #absolute value

sin cos tan atan2 #trigonometry

exp log sqrt #exponent, log, square root

int #convert to int

hex oct #convert to hex oct

srand rand #random numbers

$variable=100;

print sqrt($variable);

Numerical Built-In Functions

Session 2: Constants, variables and functions Perl for Biologists 1.2 19

substr($var, $start, $length) #substring, 0-based

chomp($var) #removes trailing \n

index($var, $str) #position of $str in $var

reverse($var) #reverse string

rindex($var, $str) #reverse index

uc($var) lc($var) #uppercase, lowercase

String Built-In Functions (some)

Session 2: Constants, variables and functions Perl for Biologists 1.2 20

ord($var) #converts character to its

#numerical ASCII value

$num = ord("a") #$num is now 97

chr($nvar) #converts int into corresponding

#ASCII character

$char = chr(99) #$char is now "c"

String Built-In Functions (some)

Session 2: Constants, variables

and functions
Perl for Biologists 1.2 21

ASCII Table

Session 2: Constants, variables and functions Perl for Biologists 1.2 22

Finding more about functions and modules

Use perldoc command

>perldoc -f ord

>perldoc Net::Telnet

Search perldoc on the web

http://perldoc.perl.org/perlfunc.html

Session 2: Constants, variables and functions Perl for Biologists 1.2 23

Binary assignment

$variable = 1;

$variable = $variable + 3; #variable is now 4

$variable += 3; #variable is now 7,

same effect

$svar = "Jarek";

$svar .= " Pillardy"; #variable is now

"Jarek Pillardy"

$svar = "My name is " . $svar;

#"My name is Jarek Pillardy"

or

$svar .= "My name is "; � NOT SAME AS ABOVE

#"Jarek PillardyMy name is "

Session 2: Constants, variables and functions Perl for Biologists 1.2 24

#!/usr/local/bin/perl

$svar = "Hello, CBSU\n";

print "svar = $svar";

$nvar = 55.55;

print "nvar = $nvar\n";

$nvar += 10;

print "nvar is now $nvar\n";

$svar .= "Hello again\n";

print $svar;

$svar = "Hello first\n" . $svar;

print $svar;

script3.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 25

#!/usr/local/bin/perl

$svar = "Hello, CBSU\n";

print "svar = $svar";

$nvar = 55.55;

print "nvar = $nvar\n";

$nvar += 10;

print "nvar is now $nvar\n";

$svar .= "Hello again\n";

print $svar;

$svar = "Hello first\n" . $svar;

print $svar;

script3.pl
[jarekp@cbsum1c2b014 perl_02]$ perl script3.pl

svar = Hello, CBSU

nvar = 55.55

nvar is now 65.55

Hello, CBSU

Hello again

Hello first

Hello, CBSU

Hello again

[jarekp@cbsum1c2b014 perl_02]$

Session 2: Constants, variables and functions Perl for Biologists 1.2 26

#!/usr/local/bin/perl

$svar = "Hello, CBSU\n";

print "svar = $svar\n";

$svar1 = $svar;

chomp($svar1);

print "svar1 = $svar1\n";

$svar1 = substr($svar1, 0, 5);

print "svar1 = $svar1\n";

print index($svar, ",") . "\n";

print index($svar1, ",") . "\n";

print uc($svar1) . "\n";

script3a.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 27

#!/usr/local/bin/perl

$svar = "Hello, CBSU\n";

print "svar = $svar\n";

$svar1 = $svar;

chomp($svar1);

print "svar1 = $svar1\n";

$svar1 = substr($svar1, 0, 5);

print "svar1 = $svar1\n";

print index($svar, ",") . "\n";

print index($svar1, ",") . "\n";

print uc($svar1) . "\n";

script3a.pl
[jarekp@cbsum1c2b014 perl_02]$ perl script3a.pl

svar = Hello, CBSU

svar1 = Hello, CBSU

svar1 = Hello

5

-1

HELLO

[jarekp@cbsum1c2b014 perl_02]$

Session 2: Constants, variables and functions Perl for Biologists 1.2 28

Automatic Variable Conversion

or Variable Interpolation

Perl is a context-based language, variables will be converted (or

interpolated) as needed

$nvar = 55.5;

$svar = "The number nvar is " . $nvar;

$nvar is converted to string and

concatenated with preceding string

Perl expects string since

string operation is being

used

Session 2: Constants, variables and functions Perl for Biologists 1.2 29

Automatic Variable Conversion

or Variable Interpolation

Perl is a context-based language, variables will be converted (or

interpolated) as needed

$nvar = 55.5;

$svar = "2variable6str ";

$nnn = $nvar * $svar; #$nnn is now 55.5*2 = 111

$svar is converted to number, all trailing

letters and non-numbers are discarded, if there

are no starting numbers the result is 0

Perl expects number since

numeric operation is being

used

Session 2: Constants, variables and functions Perl for Biologists 1.2 30

#!/usr/local/bin/perl

$nvar = 55.5;

$svar = "The number nvar is " .

$nvar;

print "$svar\n";

$nvar = 55.5;

$svar = "2variable1str 3a";

$nnn = $nvar * $svar;

print "$nnn\n";

print "55.5" . 2 * 7;

print "\n";

script4.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 31

#!/usr/local/bin/perl

$nvar = 55.5;

$svar = "The number nvar is " .

$nvar;

print "$svar\n";

$nvar = 55.5;

$svar = "2variable1str 3a";

$nnn = $nvar * $svar;

print "$nnn\n";

print "55.5" . 2 * 7;

print "\n";

script4.pl
[jarekp@cbsum1c2b014 perl_02]$ perl script4.pl

The number nvar is 55.5

111

55.514

[jarekp@cbsum1c2b014 perl_02]$

Session 2: Constants, variables and functions Perl for Biologists 1.2 32

#!/usr/local/bin/perl

use warnings;

$nvar = 55.5;

$svar = "The number nvar is " .

$nvar;

print "$svar\n";

$nvar = 55.5;

$svar = "2variable1str 3a";

$nnn = $nvar * $svar;

print "$nnn\n";

print "55.5" . 2 * 7;

print "\n";

script5.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 33

#!/usr/local/bin/perl

use warnings;

$nvar = 55.5;

$svar = "The number nvar is " . $nvar;

print "$svar\n";

$nvar = 55.5;

$svar = "2variable1str 3a";

$nnn = $nvar * $svar;

print "$nnn\n";

print "55.5" . 2 * 7;

print "\n";

script5.pl
[jarekp@cbsum1c2b014 perl_02]$ perl script5.pl

The number nvar is 55.5

Argument "2variable1str 3a" isn't numeric in multiplication (*) at script5.pl line 11.

111

55.514

[jarekp@cbsum1c2b014 perl_02]$

Session 2: Constants, variables and functions Perl for Biologists 1.2 34

#!/usr/local/bin/perl

use warnings;

$nvar = 2;

print "$nvar\n";

$nvar1 = $nvar * 10;

print "$nvar1\n";

$nvar1 = $nvar * 010;

print "$nvar1\n";

$nvar1 = $nvar * "010";

print "$nvar1\n";

script6.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 35

#!/usr/local/bin/perl

use warnings;

$nvar = 2;

print "$nvar\n";

$nvar1 = $nvar * 10;

print "$nvar1\n";

$nvar1 = $nvar * 010;

print "$nvar1\n";

$nvar1 = $nvar * "010";

print "$nvar1\n";

script6.pl

[jarekp@cbsum1c2b014 perl_02]$ perl script6.pl

2

20

16

20

[jarekp@cbsum1c2b014 perl_02]$

Session 2: Constants, variables and functions Perl for Biologists 1.2 36

What if we use a variable that has not been declared?

print "=>$newvar<=\n";

Session 2: Constants, variables and functions Perl for Biologists 1.2 37

What if we use a variable that has not been declared?

print "=>$newvar<=\n";

No problem, any new variable is assigned a special value: undef

It will interpolate to

an empty string in string context

0 in numerical context

BEWARE: USING UNINITIALIZED VARIABLE IS A VERY COMMON

SOURCE OF ERRORS. USE WARNINGS, IT HELPS.

Session 2: Constants, variables and functions Perl for Biologists 1.2 38

#!/usr/local/bin/perl

use warnings;

print "=>$newvar<=\n";

script7.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 39

#!/usr/local/bin/perl

use warnings;

print "=>$newvar<=\n";

[jarekp@cbsum1c2b014 perl_02]$ perl script7.pl

Name "main::newvar" used only once: possible typo at script7.pl line 5.

Use of uninitialized value $newvar in concatenation (.) or string at script7.pl line 5.

=><=

[jarekp@cbsum1c2b014 perl_02]$

script7.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 40

ALL numbers are represented in Perl as double-precision

floating point numbers

On 64 bit machines each takes 8 bytes = 64 bits

Numbers

Session 2: Constants, variables and functions Perl for Biologists 1.2 41

#!/usr/local/bin/perl

$nvar = 2**1023;

print "$nvar\n";

$nvar = 2**1024;

print "$nvar\n";

$nvar = 2**-1074;

print "$nvar\n";

$nvar = 2**-1075;

print "$nvar\n";

script8.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 42

#!/usr/local/bin/perl

$nvar = 2**1023;

print "$nvar\n";

$nvar = 2**1024;

print "$nvar\n";

$nvar = 2**-1074;

print "$nvar\n";

$nvar = 2**-1075;

print "$nvar\n";

[jarekp@cbsum1c2b014 perl_02]$ perl script8.pl

8.98846567431158e+307

inf

4.94065645841247e-324

0

[jarekp@cbsum1c2b014 perl_02]$

overflow

underflow

script8.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 43

#!/usr/local/bin/perl

$nvar = log(10);

print "$nvar\n";

$nvar = $nvar + 1e-14;

print "$nvar\n";

$nvar = $nvar + 1e-15;

print "$nvar\n";

script9.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 44

#!/usr/local/bin/perl

$nvar = log(10);

print "$nvar\n";

$nvar = $nvar + 1e-14;

print "$nvar\n";

$nvar = $nvar + 1e-15;

print "$nvar\n";

[jarekp@cbsum1c2b014 perl_02]$ perl script9.pl

2.30258509299405

2.30258509299406

2.30258509299406

[jarekp@cbsum1c2b014 perl_02]$

15 digit accuracy:

1e-14 + 1 different than 1

1e-15 + 1 same as 1

script9.pl

Session 2: Constants, variables and functions Perl for Biologists 1.2 45

1. In a Perl program create a string representing a 54 bp DNA strand consisting of

6 repeats, store it in a variable. Create another variable containing the above

DNA reversed. Create the third variable storing a subsequence of the original

sequence from position 31 to position 47. Print all three.

Hint: Use string functions and operators to create strings from a repeat.

2. Use perldoc to find out how rand() and srand() functions work. Write a Perl

program that produces a 17 character string composed of random lower case

letters, store it in a variable and print it out. Run the program several times and

compare the results.

Hint: use chr(), int() functions and ASCII table.

Exercises

