
Perl for Biologists

Session 3
March 18, 2015

Control flow statements

Jaroslaw Pillardy

Session 3: Control flow statements Perl for Biologists 1.2 1

Session 3: Control flow statements Perl for Biologists 1.2 2

Session 2 Exercises Review

1. In a Perl program create a string representing a 54 bp DNA strand consisting of

6 repeats, store it in a variable. Create another variable containing the above

DNA reversed. Create the third variable storing a subsequence of the original

sequence from position 31 to position 47. Print all three.

Hint: Use string functions and operators to create strings from a repeat.

/home/jarekp/perl_02/exercise1.pl

2. Use perldoc to find out how rand() and srand() functions work. Write a Perl

program that produces a 17 character string composed of random lower case

letters, store it in a variable and print it out. Run the program several times and

compare the results.

Hint: use chr(), int() functions and ASCII table.

/home/jarekp/perl_02/exercise2.pl

Session 3: Control flow statements Perl for Biologists 1.2 3

Each program has three default input/output objects

associated with it

• input stream – usually keyboard input: STDIN

• output stream – usually screen: STDOUT

• error stream – usually screen: STDERR

Simple Line Input

Session 3: Control flow statements Perl for Biologists 1.2 4

#!/usr/local/bin/perl

$svar = <STDIN>; #get one line of std input

print STDOUT "1. [$svar]\n";

chomp($svar);

print STDERR "2. [$svar]\n";

print "3. [$svar]\n";

script1.pl

All scripts for this session can be copied from

/home/jarekp/perl_03

in this case /home/jarekp/perl_03/script1.pl

>cp /home/jarekp/perl_03/script1.pl .

copies this script to your current directory

Session 3: Control flow statements Perl for Biologists 1.2 5

#!/usr/local/bin/perl

$svar = <STDIN>; #get one line of std input

print STDOUT "1. [$svar]\n";

chomp($svar);

print STDERR "2. [$svar]\n";

print "3. [$svar]\n";

script1.pl

Session 3: Control flow statements Perl for Biologists 1.2 6

./script1.pl

input from keyboard, output and error to screen

./script1.pl 1> out 2> err

input from keyboard, output to file out, error to file err, files overwritten

./script1.pl >& out.all

input from keyboard, output and error to file out.all, file overwritten

cat input.txt | ./script1.pl 1>> out 2>> err

input from file input.txt, output appended to file out, error appended to file err

symbol | is used to connect output from one program (cat in the example

above) and input of another program (./script1.pl), it is called a pipe

Linux help: redirecting input and output

Session 3: Control flow statements Perl for Biologists 1.2 7

#!/usr/local/bin/perl

$svar = <STDIN>;

print STDOUT "1. [$svar]\n";

chomp($svar);

print STDERR "2. [$svar]\n";

print "3. [$svar]\n";

script1.pl
[jarekp@cbsum1c2b014 perl_03]$ perl script1.pl

one line input

1. [one line input

]

2. [one line input]

3. [one line input]

[jarekp@cbsum1c2b014 perl_03]$ perl script1.pl 1> out 2> err

another line input

[jarekp@cbsum1c2b014 perl_03]$ cat out

1. [another line input

]

3. [another line input]

[jarekp@cbsum1c2b014 perl_03]$ cat err

2. [another line input]

[jarekp@cbsum1c2b014 perl_03]$ perl script1.pl >& out.all

yet another one

[jarekp@cbsum1c2b014 perl_03]$ cat out.all

2. [yet another one]

1. [yet another one

]

3. [yet another one]

[jarekp@cbsum1c2b014 perl_03]$ cat input.txt

stored input line

[jarekp@cbsum1c2b014 perl_03]$ cat input.txt | perl script1.pl

1. [stored input line

]

2. [stored input line]

3. [stored input line]

[jarekp@cbsum1c2b014 perl_03]$

Session 3: Control flow statements Perl for Biologists 1.2 8

Statements to control the sequence of statements executed in

the program.

Logical: (if)

Repetitive: (loops)

Control flow statements

Session 3: Control flow statements Perl for Biologists 1.2 9

#!/usr/local/bin/perl

$var = <STDIN>;

chomp($var);

if($var > 5)

{

print "input is greater than 5\n";

}

elsif($var == 5)

{

print "input is equal to 5\n";

}

else

{

print "input is less than 5\n";

}

print "input is $var";

script2.pl

Session 3: Control flow statements Perl for Biologists 1.2 10

#!/usr/local/bin/perl

$var = <STDIN>;

chomp($var);

if($var > 5)

{

print "input is greater than 5\n";

}

elsif($var == 5)

{

print "input is equal to 5\n";

}

else

{

print "input is less than 5\n";

}

print "input is $var";

script2.pl

beginning if statement

with condition

subsequent else if

statement(s) with

condition (optional)

ending else statement

(optional)

code blocks

Session 3: Control flow statements Perl for Biologists 1.2 11

Code block is a separate part of program enclosed in { }

It acts as if it is a single statement

It is a way to group statements into one entity

Code block and its scope

Session 3: Control flow statements Perl for Biologists 1.2 12

Numerical

== equal

> greater than

< less then

>= greater or equal

<= less or equal

!= not equal

String

eq equal

lt less than

gt greater than

le less then or equal

ge greater than or equal

ne not equal

Comparison operators

compares ASCII code of a first

different character:

"abd" gt "abc" is true

Session 3: Control flow statements Perl for Biologists 1.2 13

The result of comparison is a Boolean value (true or false)

$res = "abd" gt "abc";

In fact $res is not storing anything special – it is just a 0 or 1 number.

In general, in any logical statement:

number 0 means false, any other number means true

empty string means false, any other string means true

undef is always false

Boolean values

Session 3: Control flow statements Perl for Biologists 1.2 14

$var1 = 5;

$var2 = 15;

if($var1 == $var2) #obviously FALSE, will NOT print TRUE

{

print "TRUE";

}

if($var1 = $var2) #in LOGICAL context it is TRUE, will

{ #print TRUE

print "TRUE";

}

ABOUT == AND =

assign $var1 the value of $var2, the result

of which is 15 (new value of $var1), number

15 means TRUE

Session 3: Control flow statements Perl for Biologists 1.2 15

#!/usr/local/bin/perl

print "type value 1: ";

$val1 = <STDIN>;

chomp($val1);

print "type value 2: ";

$val2 = <STDIN>;

chomp($val2);

if($val1>$val2){print "NUM: $val1 > $val2\n";}

elsif($val1==$val2){print "NUM: $val1 == $val2\n";}

else {print "NUM: $val1 < $val2\n";}

if($val1 gt $val2){print "STR: $val1 gt $val2\n";}

elsif($val1 eq $val2){print "STR: $val1 eq $val2\n";}

else {print "STR: $val1 lt $val2\n";}

script3.pl

Session 3: Control flow statements Perl for Biologists 1.2 16

while(condition)

{

statement;

if(condition1){next;}

statement;

if(condition2){last;}

statement;

}

next; #moves to the next iteration

last; #exits the loop

while loop

optional

Session 3: Control flow statements Perl for Biologists 1.2 17

#!/usr/local/bin/perl

#finding out the accuracy in Perl

$n1 = 1;

$n2 = 1;

while(1)

{

$n2 = $n2 / 10;

if($n1 + $n2 == $n1)

{

print "$n1 + $n2 SAME as $n1\n";

print "Perl accuracy reached\n";

last;

}

else

{

print "$n1 + $n2 DIFFERENT than $n1\n";

}

}

script4.pl

Session 3: Control flow statements Perl for Biologists 1.2 18

for(init_statement; test_statement; increment;)

{

statement;

if(condition1){next;}

statement;

if(condition2){last;}

statement;

}

next; #moves to the next iteration

last; #exits the loop

for loop

optional

Session 3: Control flow statements Perl for Biologists 1.2 19

#!/usr/local/bin/perl

#compute factorial

print "type factorial input: ";

$n0 = <STDIN>;

chomp($n0);

$result = 1;

for($i=2; $i<=$n0; $i+=1)

{

$result *= $i;

}

print "$n0 factorial is $result\n";

script5.pl

Session 3: Control flow statements Perl for Biologists 1.2 20

Steps

1. Decide how to do it – choose algorithm

2. Write a plan in pseudocode to have execution framework

3. Fill the framework with the actual code

4. Try to run and eliminate basic errors (syntax etc)

5. Run and verify the output – debug.

The first real program: compute π number.

Session 3: Control flow statements Perl for Biologists 1.2 21

Compute π number: algorithm

take a square of a side length of 1

put a quarter of a circle with radius of 1

inside

area of the square is As = a*a = 1

area of the quarter of this circle is

Ac = 0.25*π*r2 = 0.25* π

Ac / As = π / 4

r=1

a=1

Session 3: Control flow statements Perl for Biologists 1.2 22

Compute π number: algorithm

Ac / As = π / 4

If we select random points inside the

square the ratio of the number of

those that are inside the circle to the

total will approach the ratio of areas

as accurately as we want, provided

we select sufficient number of points

and our random numbers are random

Nc / Ntotal = π / 4

π = 4 * Nc / Ntotal

r=1

x 10

1

0

y

Session 3: Control flow statements Perl for Biologists 1.2 23

Compute π number: algorithm

π = 4 * Nc / Ntotal

Algorithm

Select two random numbers x,y; each

between 0 and 1

if x� + y�< 1 count it as inside the

circle

repeat the above MANY times

counting total number of pairs and

the number of pairs inside circle

compute π

r= x� + y�

x 10

1

0

y

Session 3: Control flow statements Perl for Biologists 1.2 24

#!/usr/local/bin/perl

#initialize random number generator and counters

#do computations in a loop

#get two random numbers

#check if they are inside circle

#update counters

#compute current pi and print it

#end loop

#print final pi value

script6.pl

Session 3: Control flow statements Perl for Biologists 1.2 25

#!/usr/local/bin/perl

#initialize random number generator and counters

srand(1484638389);

$ntot = 0;

$nc = 0;

#do computations in a loop

#get two random numbers

#check if they are inside circle

#update counters

#compute current pi and print it

#end loop

#print final pi value

script6.pl

Session 3: Control flow statements Perl for Biologists 1.2 26

#!/usr/local/bin/perl

#initialize random number generator and counters

srand(1484638389);

$ntot = 0;

$nc = 0;

while($ntot<1000)

{

#get two random numbers

#check if they are inside circle

#update counters

#compute current pi and print it

}

#print final pi value

script6.pl

Session 3: Control flow statements Perl for Biologists 1.2 27

#!/usr/local/bin/perl

#initialize random number generator and counters

srand(1484638389);

$ntot = 0;

$nc = 0;

while($ntot<1000)

{

#get two random numbers

$x = rand(1);

$y = rand(1);

#check if they are inside circle

#update counters

#compute current pi and print it

}

#print final pi value

script6.pl

Session 3: Control flow statements Perl for Biologists 1.2 28

#!/usr/local/bin/perl

#initialize random number generator and counters

srand(1484638389);

$ntot = 0;

$nc = 0;

while($ntot<1000)

{

#get two random numbers

$x = rand(1);

$y = rand(1);

#check if they are inside circle

if(sqrt($x*$x + $y*$y) < 1)

{

$nc += 1;

}

$ntot += 1;

#compute current pi and print it

}

#print final pi value

script6.pl

Session 3: Control flow statements Perl for Biologists 1.2 29

#!/usr/local/bin/perl

#initialize random number generator and counters

srand(1484638389);

$ntot = 0;

$nc = 0;

while($ntot<1000)

{

#get two random numbers

$x = rand(1);

$y = rand(1);

#check if they are inside circle

if(sqrt($x*$x + $y*$y) < 1)

{

$nc++;

}

$ntot++;

#compute current pi and print it

}

#print final pi value

script6.pl

shortcut for adding

one to itself

Session 3: Control flow statements Perl for Biologists 1.2 30

#!/usr/local/bin/perl

#initialize random number generator and counters

srand(1484638389);

$ntot = 0;

$nc = 0;

while($ntot<1000)

{

#get two random numbers

$x = rand(1);

$y = rand(1);

#check if they are inside circle

if(sqrt($x*$x + $y*$y) < 1)

{

$nc++;

}

$ntot++;

#compute current pi and print it

$pi = 4*$nc/$ntot;

print "$ntot $pi\n";

}

print "After $ntot iterations pi is $pi\n";

script6.pl

Session 3: Control flow statements Perl for Biologists 1.2 31

RUN IT

[jarekp@cbsum1c2b014 perl_03]$ perl script6.pl

980 3.01632653061225

981 3.01732925586137

982 3.0183299389002

983 3.01525940996948

984 3.01626016260163

985 3.01725888324873

986 3.01825557809331

987 3.01925025329281

988 3.02024291497976

989 3.02123356926188

990 3.02222222222222

991 3.01917255297679

992 3.02016129032258

993 3.02114803625378

994 3.02213279678068

995 3.02311557788945

996 3.02409638554217

997 3.02507522567703

998 3.02204408817635

999 3.02302302302302

1000 3.02

After 1000 iterations pi is 3.02

Looks good, but:

1. π is displayed with varying

accuracy

2. we don’t need that many

lines printed – way too fast

3. 1000 iterations is not

enough

Session 3: Control flow statements Perl for Biologists 1.2 32

The function to produce a string with full control of its shape and form is

printf and sprintf

the first parameter is the format, expressed in C notation

the following parameters are values to be printed according to format

printf is like print, but formatted, sprintf prints to a string

$svar = sprintf("full length number %17.15f while short is %d", 2, 3);

print "$svar\n";

will produce output

full length number 2.000000000000000 while short is 3

Session 3: Control flow statements Perl for Biologists 1.2 33

printf/sprintf formats

%17.15f floating point number, total 17 digits, 15 after dot

%17.10e floating point number with exponent, 17 digits total

10 after dot

%10d integer, total length 10 digits

%010d integer, total length 10 digits, pad with zeros on the left

%s string

%-10s string, total length 10 chars, align left

Session 3: Control flow statements Perl for Biologists 1.2 34

#!/usr/local/bin/perl

printf("%17.15f", 2);

print "\n";

printf("%17.10e", 2);

print "\n";

printf("%10d", 2);

print "\n";

printf("%010d", 2);

print "\n";

printf("*%s*", "a string");

print "\n";

printf("*%-20s*", "a string");

print "\n";

print sprintf("*%20s*", "a string") ."\n";

script7.pl

Session 3: Control flow statements Perl for Biologists 1.2 35

RUN IT

[jarekp@cbsum1c2b014 perl_03]$ perl script6.pl

980 3.01632653061225

981 3.01732925586137

982 3.0183299389002

983 3.01525940996948

984 3.01626016260163

985 3.01725888324873

986 3.01825557809331

987 3.01925025329281

988 3.02024291497976

989 3.02123356926188

990 3.02222222222222

991 3.01917255297679

992 3.02016129032258

993 3.02114803625378

994 3.02213279678068

995 3.02311557788945

996 3.02409638554217

997 3.02507522567703

998 3.02204408817635

999 3.02302302302302

1000 3.02

After 1000 iterations pi is 3.02

Looks good, but:

1. π is displayed with varying

accuracy

2. we don’t need that many

lines printed – way too fast

3. 1000 iterations is not

enough

Session 3: Control flow statements Perl for Biologists 1.2 36

#!/usr/local/bin/perl

#initialize random number generator and counters

srand(1484638389);

$ntot = 0;

$nc = 0;

while($ntot<1_000_000)

{

#get two random numbers

$x = rand(1);

$y = rand(1);

#check if they are inside circle

if(sqrt($x*$x + $y*$y) < 1)

{

$nc++;

}

$ntot++;

#compute current pi and print it

$pi = 4*$nc/$ntot;

if($ntot%1000==0){printf(" %15d %18.16f\n", $ntot, $pi);}

}

printf "After %d iterations pi is %18.16f\n ", $ntot, $pi;

script6a.pl

print every 1000

iterations

run longer

Session 3: Control flow statements Perl for Biologists 1.2 37

RUN IT

979000 3.1437589376915218

980000 3.1436979591836733

981000 3.1437268093781854

982000 3.1436659877800408

983000 3.1437070193285859

984000 3.1437439024390246

985000 3.1436994923857866

986000 3.1436470588235292

987000 3.1436393110435663

988000 3.1436477732793522

989000 3.1436481294236605

990000 3.1435636363636363

991000 3.1435358224016143

992000 3.1435362903225808

993000 3.1434964753272912

994000 3.1434406438631792

995000 3.1434733668341708

996000 3.1435301204819277

997000 3.1435185556670011

998000 3.1435511022044089

999000 3.1435595595595593

1000000 3.1436679999999999

After 1000000 iterations pi is 3.1436679999999999

Looks good, but:

1. 1000000 iterations is not

enough

Session 3: Control flow statements Perl for Biologists 1.2 38

1. Modify the program from script6a.pl to run it longer (more iterations). Try to

run for several different numbers of iterations (increase each time by at least

an order of magnitude). Is our π number converging to the real π? If yes, what

does it say about our computer? If no, what is the problem?

2. Change script4.pl so it doesn’t use last statement at all.

3. Using rand() and srand() functions produce 4.1 kb long random DNA sequence

with AT content propensity of 75%, store it in a variable, then print it out to

STDERR stream in fasta format. Run the program and redirect STDERR to a file

randomdna.fa.

Hint 1: For each bp use rand() twice, first deciding if it will be GC or AT with 75%

probability, then choosing G/C or A/T with 50% probability (two if).

Hint 2: Generate the sequence by adding 1 bp to the string variable in a for

loop.

Exercises

