
Perl for Biologists

Session 4
March 25, 2015

Arrays and lists

Jaroslaw Pillardy

Session 4: Arrays and lists Perl for Biologists 1.2 1

Session 4: Arrays and lists Perl for Biologists 1.2 2

if(condition1)
{

statement;

}

elsif(condition2)
{

statement;

}

else
{

statement;

}

if statement

if($n>6)
{

print "n>6\n";

}

elsif($n==5)
{

print "n=5\n";

}

elsif($n==6)
{

print "n=6\n";

}

else
{

print "n<5\n";

}

Session 4: Arrays and lists Perl for Biologists 1.2 3

while(condition)
{

statement;

if(condition1){next;}
statement;

if(condition2){last;}
statement;

}

next; #moves to the next iteration

last; #exits the loop

while loop

optional

Session 4: Arrays and lists Perl for Biologists 1.2 4

#!/usr/local/bin/perl

$n=rand(10);
print "start $n\n";

while($n<9)
{

if($n<5)
{

print " less than 5 $n\n";

next;
}

print "main loop $n\n";

$n=rand(10);
}

while loop

example1.pl : generate random numbers 0..9 until a number is >= 5 (problem in script!)

Session 4: Arrays and lists Perl for Biologists 1.2 5

#!/usr/local/bin/perl

$n=rand(10);
print "start $n\n";

while($n<9)
{

if($n<5)
{

print " less than 5 $n\n";

$n=rand(10);
next;

}

print "main loop $n\n";

$n=rand(10);
}

while loop

example2.pl : generate random numbers 0..9 until a number is >= 5 (correct)

Session 4: Arrays and lists Perl for Biologists 1.2 6

and && $n>5 && $n<10

or || $n<5 || $n>10

not ! !($n>5 && $n<10)

logical operators

Session 4: Arrays and lists Perl for Biologists 1.2 7

for(init_statement; test_statement; increment;)
{

statement;

if(condition1){next;}
statement;

if(condition2){last;}
statement;

}

next; #moves to the next iteration

last; #exits the loop

for loop

optional

Session 4: Arrays and lists Perl for Biologists 1.2 8

#!/usr/local/bin/perl

print "odd or even? ";

$choice = <STDIN>;

chomp($choice);
if(lc($choice) ne "odd" && lc($choice) ne "even")

{

print "ERROR: wrong choice '$choice'\n";

exit;
}

print "sum up to what number (int)? ";

$nnn = <STDIN>;

chomp($nnn);
if(int(1*$nnn) != $nnn)
{

print "ERROR: wrong int number $nnn\n";

exit;
}

$sum = 0;

$rem = 0;

if(lc($choice) eq "odd"){$rem = 1;}

for($i=1; $i<=$nnn; $i++)
{

if($i % 2 == $rem){$sum += $i;}

}

print "Sum of all $choice int up to $nnn is $sum\n";

for loop

example3.pl : sum all odd or even numbers less then predefined value

Session 4: Arrays and lists Perl for Biologists 1.2 9

#!/usr/local/bin/perl

print "odd or even? ";

$choice = <STDIN>;

chomp($choice);
if(lc($choice) ne "odd" && lc($choice) ne "even")

{

print "ERROR: wrong choice '$choice'\n";

exit;
}

print "sum up to what number (int)? ";

$nnn = <STDIN>;

chomp($nnn);
if(int(1*$nnn) != $nnn)
{

print "ERROR: wrong int number $nnn\n";

exit;
}

$sum = 0;

$rem = 0;

if(lc($choice) eq "odd"){$rem = 1;}

for($i=1; $i<=$nnn; $i++)
{

if($i % 2 == $rem){$sum += $i;}

}

print "Sum of all $choice int up to $nnn is $sum\n";

for loop

example3.pl : sum all odd or even numbers less then predefined value

Challenge

Add option “all” to the script

Session 4: Arrays and lists Perl for Biologists 1.2 10

printf/sprintf formats

%17.15f floating point number, total 17 digits, 15 after dot

%17.10e floating point number with exponent, 17 digits total

10 after dot

%10d integer, total length 10 digits

%010d integer, total length 10 digits, pad with zeros on the left

%s string

%-10s string, total length 10 chars, align left

$svar = sprintf("full length number %17.15f while short is %d", 2, 3);
print "$svar\n";

printf "full length number %17.15f while short is %d", 2, 3 ;

Session 4: Arrays and lists Perl for Biologists 1.2 11

Session 3 Exercises Review

1. Modify the program from script6a.pl to run it longer (more iterations). Try to run for

several different numbers of iterations (increase each time by at least an order of

magnitude). Is our π number converging to the real π? If yes, what does it say about our

computer? If no, what is the problem?

/home/jarekp/perl_03/exercise1.pl

After 1_000_000_000 iterations pi is 3.1416316200000001 1.000012403393600

After 10_000_000_000 iterations pi is 3.1415767500000000 0.999994937730144

After 100_000_000_000 iterations pi is 3.1415895820399999 0.999999022295333

Real pi is 3.1415926535897932 1.000000000000000

uniform distribution:

After 999_950_884 iterations pi is 3.1415931904911440 1.000000170901007

Session 4: Arrays and lists Perl for Biologists 1.2 12

Session 3 Exercises Review : Exercise 1 : 1,000,000,000 iterations

Session 4: Arrays and lists Perl for Biologists 1.2 13

Session 3 Exercises Review : Exercise 1 : 1,000,000,000 iterations (tail)

Session 4: Arrays and lists Perl for Biologists 1.2 14

Session 3 Exercises Review : Exercise 1 : 1,000,000,000 iterations (tail)

random

numbers

ideal uniform distribution

(exercise1test.pl)

Session 4: Arrays and lists Perl for Biologists 1.2 15

Session 3 Exercises Review : Exercise 1 : 10,000,000,000 iterations

real π

Session 4: Arrays and lists Perl for Biologists 1.2 16

Session 3 Exercises Review

2. Change script4.pl so it doesn’t use last statement at all.

/home/jarekp/perl_03/exercise2.pl

#!/usr/local/bin/perl

#finding out the accuracy in Perl

$n1 = 1;

$n2 = 1;

while($n1 + $n2 != $n1)

{

print "$n1 + $n2 DIFFERENT than $n1\n";

$n2 = $n2 / 10;

}

print "$n1 + $n2 SAME as $n1\n";

print "Perl accuarcy reached\n";

Session 4: Arrays and lists Perl for Biologists 1.2 17

Session 3 Exercises Review

3. Using rand() and srand() functions produce 4.1 kb long random DNA sequence

with AT content propensity of 75%, store it in a variable, then print it out to

STDERR stream in fasta format. Run the program and redirect STDERR to a file

randomdna.fa.

Hint 1: For each bp use rand() twice, first deciding if it will be GC or AT with 75%

probability, then choosing G/C or A/T with 50% probability (two if).

Hint 2: Generate the sequence by adding 1 bp to the string variable in a for

loop.

/home/jarekp/perl_03/exercise3.pl (minimum version)

/home/jarekp/perl_03/exercise3a.pl (nice version)

Session 4: Arrays and lists Perl for Biologists 1.2 18

A list:

(1, 5, 8, 33, 23, 11, 1, 44)

each element has assigned index starting from 0

(1, 5, "a", 77, "abcd", 99)

lists can contain mixed types

List: ordered collection of scalar values

Session 4: Arrays and lists Perl for Biologists 1.2 19

explicit: (1, 5, 8, 33, 23, 11, 1, 44)

range: 1..9;
same as (1, 2, 3, 4, 5, 6, 7, 8 , 9)

quoted word: qw(jarek pillardy perl 2013)
same as ('jarek', 'pillardy', 'perl', '2013')

quoted word 1: qw*jarek pillardy perl 2013*
same as ('jarek', 'pillardy', 'perl', '2013')

Lists can be declared in various ways

list delimiter (any character)

note SINGLE QUOTATIONS

In qw() words are delimited by space, multiple spaces are compressed to one

Session 4: Arrays and lists Perl for Biologists 1.2 20

A variable:

@arvar = (1, 5, 8, 33, 23, 11, 1, 44);

each element has assigned index starting from 0

@arvar = (1, 5, "a", 77, "abcd", 99);

arrays can contain mixed types

@arvar = 1..55;

any valid list declaration is OK to assign to an array

Array: a variable that contains a list

Session 4: Arrays and lists Perl for Biologists 1.2 21

@arvar = (1, 5, "a", 77, "abcd", 99);

array elements are scalar variables and can be accessed with

index

print $arvar[0]; #will print 1

print $arvar[4]; #will print abcd

print $arvar[5]; #will print 99

$i=3;

print $arvar[$i]; #will print 77

Array: a variable that contains a list

@ character means we reference to an array variable as a whole

$ character means we reference to a scalar variable – a single

element of @arvar, index starts from 0

Session 4: Arrays and lists Perl for Biologists 1.2 22

#!/usr/local/bin/perl

@var = (1, 2, 3);

for($i=3; $i<=10; $i++)
{

$var[$i] = rand(10);
}

for($i=0; $i<=10; $i++)
{

printf "%5.3f ", $var[$i];

}

print "\n";

script1.pl

All scripts for this session can be copied from

/home/jarekp/perl_04

in this case /home/jarekp/perl_04/script1.pl

>cp /home/jarekp/perl_04/script1.pl .

copies this script to your current directory

Session 4: Arrays and lists Perl for Biologists 1.2 23

#!/usr/local/bin/perl

@var = (1, 2, 3);

for($i=3; $i<=10; $i++)
{

$var[$i] = rand(10);
}

for($i=0; $i<=10; $i++)
{

printf "%5.3f ", $var[$i];

}

print "\n";

script1.pl

[jarekp@cbsum1c2b014 perl_04]$ perl script1.pl

1.000 2.000 3.000 1.331 5.585 7.717 4.804 5.715 2.986 2.731 3.388

[jarekp@cbsum1c2b014 perl_04]$

an array can be expanded just

by adding elements to it

Session 4: Arrays and lists Perl for Biologists 1.2 24

#!/usr/local/bin/perl

$var[0] = 1;

$var[1] = 2;

$var[4] = 5;

$var[8] = 9;

print "Array length is " . ($#var + 1) . "\n";

for($i=0; $i<=$#var; $i++)
{

printf "%5.3f\n", $var[$i];

}

script2.pl

index of the last

element in an array

it is possible to create an array

just by creating its elements

Session 4: Arrays and lists Perl for Biologists 1.2 25

script2.pl

[jarekp@cbsum1c2b014 perl_04]$ perl script2.pl

Array length is 9

1.000

2.000

0.000

0.000

5.000

0.000

0.000

0.000

9.000

[jarekp@cbsum1c2b014 perl_04]$

Session 4: Arrays and lists Perl for Biologists 1.2 26

#!/usr/local/bin/perl

$var[0] = 1;

$var[1] = 2;

$var[4] = 5;

$var[8] = 9;

print "Array length is " . ($#var + 1) . "\n";

for($i=0; $i<=$#var; $i++)
{

printf "%5.3f '%s'\n", $var[$i], $var[$i];
}

script2a.pl

Session 4: Arrays and lists Perl for Biologists 1.2 27

script2.pl

[jarekp@cbsum1c2b014 perl_04]$ perl script2a.pl

Array length is 9

1.000 '1'

2.000 '2'

0.000 ''

0.000 ''

5.000 '5'

0.000 ''

0.000 ''

0.000 ''

9.000 '9'

[jarekp@cbsum1c2b014 perl_04]$

undef

All the omitted array elements are assigned “undef” value, but they do exist

Session 4: Arrays and lists Perl for Biologists 1.2 28

Command line arguments are passed into a Perl script with a special array ARGV

ARGV array

#!/usr/local/bin/perl

print "You have entered " . $#ARGV+1 . " parameters\n";

print "here they are:\n";

for($i=0; $i<=$#ARGV; $i++)
{

print $i . " " . $ARGV[$i] . "\n";

}

script3.pl

Session 4: Arrays and lists Perl for Biologists 1.2 29

script3.pl

[jarekp@cbsum1c2b014 perl_04]$ perl script3.pl p1 22 -p3 abc def

You have entered 5 parameters

here they are:

0 p1

1 22

2 -p3

3 abc

4 def

[jarekp@cbsum1c2b014 perl_04]$ perl script3.pl p1 22 -p3 abc\ def

You have entered 4 parameters

here they are:

0 p1

1 22

2 -p3

3 abc def

[jarekp@cbsum1c2b014 perl_04]$ perl script3.pl

You have entered 0 parameters

here they are:

[jarekp@cbsum1c2b014 perl_04]$

Session 4: Arrays and lists Perl for Biologists 1.2 30

It is possible to assign entire arrays and lists

@arr = (1..22, 55, 66..77);

@arr1 = @arr;

or you can assign arrays to elements

@arr2 = 11..22;

($var1, $var2, $var3, $var4) = @arr2;

print "$var1 $var2 $var3 $var4" #will print 11 12 13 14

Array and list assignment

it is a 4 element list, the list

elements are variables,

assigning array to list assigns its

elements to variables (extra

elements of @arr2 are ignored

Session 4: Arrays and lists Perl for Biologists 1.2 31

or you can assign ranges of arrays to elements

@arr2 = 11..22;

($var1, $var2, $var3, $var4) = (@arr2[3..5], $arr2[7]);

print "$var1 $var2 $var3 $var4" #will print 14 15 16 18

Array and list assignment

Session 4: Arrays and lists Perl for Biologists 1.2 32

push(@arr, $val) adds value of $val as a new element at the end of array @arr

$val = pop(@arr) removes last element of @arr and returns it to $val

$val=shift(@arr) removes the first element of @arr and returns it to $val

unshift(@arr, $val) adds value of $val as the first element of array @arr

(the previous first element will become the second)

@arr1=reverse(@arr) reverses order of elements of @arr and returns it to @arr1

@arr1=sort @arr sorts elements of @arr and returns sorted array to @arr1

(the sort is based on ASCII codes)

@arr1=sort {$a<=>$b} @arr sorts elements of @arr and returns sorted array to

@arr1 (the sort is based on numerical values)

List operators

Session 4: Arrays and lists Perl for Biologists 1.2 33

@arr1=splice (@arr, $n1) removes everything after index $n1 from @arr,

returns it to @arr1

@arr1=splice (@arr, $n1, $n2) removes everything between indexes $n1 and $n2

from @arr, returns it to @arr1

@arr1=splice (@arr, $n1, $n2, @replacement)

removes everything between indexes $n1 and $n2 from

@arr, returns it to @arr1, then inserts @replacement as a

replacemnt of the removed part (may be different length)

List operators

Session 4: Arrays and lists Perl for Biologists 1.2 34

Everything that can be done using list operators can be also done explicitly

using indexes, assignments and loops

@arr = 11..22;

push(@arr, 33);

$arr[$#arr+1] = 33;

$var = pop(@arr);

$var = $arr[$#arr] ;

$arr[$#arr] = undef;

$#arr--;

same thing

same thing

… but push and pop are MUCH FASTER

Session 4: Arrays and lists Perl for Biologists 1.2 35

converting string to array

@arr = split /pattern/, $str

string is split into array elements wherever pattern is found

Session 4: Arrays and lists Perl for Biologists 1.2 36

#!/usr/local/bin/perl

@arr = split / /, "jarek pillardy perl 2013";

for($i=0; $i<=$#arr; $i++)
{

print "$i '$arr[$i]'\n";

}

print "\n";

@arr = split / +/, "jarek pillardy perl 2013";

for($i=0; $i<=$#arr; $i++)
{

print "$i '$arr[$i]'\n";

}

print "\n";

@arr = split / p/, "jarek pillardy perl 2013";

for($i=0; $i<=$#arr; $i++)
{

print "$i '$arr[$i]'\n";

}

print "\n";

script3a.pl

Session 4: Arrays and lists Perl for Biologists 1.2 37

[jarekp@cbsum1c2b014 perl_04]$ perl script3a.pl

0 'jarek'

1 ''

2 'pillardy'

3 'perl'

4 ''

5 '2013'

0 'jarek'

1 'pillardy'

2 'perl'

3 '2013'

0 'jarek '

1 'illardy'

2 'erl 2013‘

[jarekp@cbsum1c2b014 perl_04]$

script3a.pl

Session 4: Arrays and lists Perl for Biologists 1.2 38

A special version of for loop going over ALL elements of an array

foreach loop

foreach $var (@arr)
{

print "$var\n";
}

The code above will print out each element of an array @arr

Session 4: Arrays and lists Perl for Biologists 1.2 39

When a variable is not specified in Perl code, the default variable $_ is

used.

default variable $_

foreach (@arr)
{

print "$_\n";
}

The code above will print out each element of an array @arr

Session 4: Arrays and lists Perl for Biologists 1.2 40

When a variable is not specified in Perl code, the default variable $_ is

used.

default variable $_

foreach (@arr)
{

print;
}

The code above will print out each element of an array @arr

Session 4: Arrays and lists Perl for Biologists 1.2 41

Finally built-in array to string conversion can be used. Last two examples

print the array in ONE line.

default variable $_

print "@arr";

The code above will print out each element of an array @arr

Session 4: Arrays and lists Perl for Biologists 1.2 42

#!/usr/local/bin/perl

@arr = (1, 2, 3);

for($i=3; $i<=10; $i++)
{

$arr[$i] = rand(10);
}

foreach $var (@arr)
{

printf "%5.3f ", $var;

}

print "\n";

script4.pl

Session 4: Arrays and lists Perl for Biologists 1.2 43

As usual in Perl any variable can be treated differently based

on the context – as previously seen with strings and numbers

Now any variable can be treated differently in an scalar

context or a list (array) context

list and scalar context

Session 4: Arrays and lists Perl for Biologists 1.2 44

#!/usr/local/bin/perl

@arr = (1, 2, 3);

for($i=3; $i<=5; $i++)
{

$arr[$i] = rand(10);
}

print "Our array is:\n@arr\n";

@arr1 = sort(@arr); #array context

print "@arr1\n";

print @arr1 . "\n"; #scalar context for @arr1

$nnn = @arr + 2; #scalar context

print "$nnn\n";

script5.pl

converts array

into string, similar

to as it was with

numbers

Session 4: Arrays and lists Perl for Biologists 1.2 45

script5.pl

[jarekp@cbsum1c2b014 perl_04]$ perl script5.pl

Our array is:

1 2 3 6.80320264612423 9.9025302016841 0.655239057179067

0.655239057179067 1 2 3 6.80320264612423 9.9025302016841

6

8

[jarekp@cbsum1c2b014 perl_04]$

Session 4: Arrays and lists Perl for Biologists 1.2 46

#!/usr/local/bin/perl

print "please enter input lines, end with CTRL+D\n\n";

$first_line = <STDIN>;

@other_lines = <STDIN>;

print "\nfirst line of input was:\n$first_line";

print "There were " . ($#other_lines + 1) . " more lines of input\n";

print "Here they are:\n";

foreach $line (@other_lines)

{

print $line;

}

script6.pl

<STDIN> acts as a single string or an

array of strings, depending on context

Session 4: Arrays and lists Perl for Biologists 1.2 47

script6.pl

[jarekp@cbsum1c2b014 perl_04]$ perl script6.pl

please enter input lines, end with CTRL+D

line 1

line 2

line 3

first line of input was:

line 1

There were 2 more lines of input

Here they are:

line 2

line 3

[jarekp@cbsum1c2b014 perl_04]$

Session 4: Arrays and lists Perl for Biologists 1.2 48

1. Modify the program from session 3 exercise 3 (random DNA sequence) to

produce a random DNA sequence of 5 Mb (originally 4.1kb), store the

sequence string in a variable and discard the rest of the program (the part

printing it to STDERR).

2. Take the random DNA string obtained in step 1 and apply in silico restriction

enzyme by cutting the DNA at each occurrence of the pattern of “ATGCAT” . The

easiest way to do it is to use split function with ATGCAT as the splitting

pattern, store the DNA fragments in an array.

3. Create a new array containing lengths of the strings from the array obtained in

step 2 (length($str)function returns the length of a string $str). Unlike

the real restriction enzyme, split function removes ATGCAT pattern, to

correct for this you need to add 6 to each middle fragment, 1 to first and 5 to

the last (simulating cutting A{cut}TGCAT).

4. Sort the lengths array. Remember that sort function by default sorts in string

context (in alphabetical order i.e. 123 comes before 99), you need to provide

sorting function to sort numerically :
sort {$a <=> $b} @array

Print out the sorted fragment lengths.

Exercise

continued on the next page

Session 4: Arrays and lists Perl for Biologists 1.2 49

4. Run the program and redirect output to file “histogram.txt”. Transfer the file to

your laptop, import to MS Excel and use histogram tool to plot it out, use 2kb

as bin width.

Hint: You need to install Analysis ToolPak add-in to create the histogram in

Excel, you can follow the step-by-step instructions from this website

http://support.microsoft.com/kb/214269

5. Run the program for different GC content (originally 75%) and compare the

results.

Exercise cont.

