
Perl for Biologists  
 

Session 5 
April 1, 2015 

 

Hashes 
 

Jon Zhang 

Session 5: Hashes CBSU Perl for Biologists 1.2 1 



Review of Session 4 

• Array explicit declaration 
@array = (1, 5, "a", 77, "abcd", 99); 

 

• Array range declaration 
@array = 1..9; 

 

• Array quoted word declaration 
@array = qw(jon zhang perl 2013); 

@array = qw*jon zhang perl 2013*; 

 
Session 5: Hashes CBSU Perl for Biologists 1.2 2 



Review of Session 4 

• Array access 
@array = (1, 5, "a", 77, "abcd", 99); 

print $array[0]; # prints "1“ 

print $array[4]; # prints "abcd“ 

print $array[5]; # prints "99“ 

 

$i = 3; 

print $array[$i]; # prints "77" 

Session 5: Hashes CBSU Perl for Biologists 1.2 3 



Review of Session 4 

@array = (1, 5, "a", 77, "abcd", 99); 

 
• push (@array, $value):  Appends $value to the end of 

@array 
$value = 88; 

push (@array, $value); 

print $array[6]; # prints "88" 

 
• $value = pop (@array): Removes last element of @array, 

sets $value to the removed element 
$value = pop (@array); 

print $value; # prints "88" 

Session 5: Hashes CBSU Perl for Biologists 1.2 4 



Review of Session 4 

@array = (1, 5, "a", 77, "abcd", 99); 

 

• $value = shift (@array): Removes first element of @array, sets 
$value to the removed element 
$value = shift (@array); 

print $value; # prints "1“ 

print $array[0]; # prints "5" 

 
• unshift (@array, $value): Adds $value to the front of @array, 

all other elements shifted back one index 
$value = 1; 

unshift (@array, $value); 

print $array[0]; # prints "1" 

Session 5: Hashes CBSU Perl for Biologists 1.2 5 



Review of Session 4 

@array = (1, 5, "a", 77, "abcd", 99); 

 

• @reverse_array = reverse @array: Sets 
@reverse_array as a reverse order @array 
@reverse_array = reverse (@array); 

print $reverse_array[0]; # prints "99" 

 

• @sorted_array = sort @array: Sets @sorted_array as 
an ACSII sorted @array 
@sorted_array = sort @array; 

print $sorted_array[5]; # prints "abcd" 

Session 5: Hashes CBSU Perl for Biologists 1.2 6 



Review of Session 4 

@array = (5, 7, 23, 8, 1, 4); 

 

• @sorted_array = sort {$a <=> $b} @array: Sets 
@sorted_array as a numeric sorted @array 
@sorted_array = sort {$a <=> $b} @array; 

print $sorted_array[0]; # prints "1"; 

print $sorted_array[5]; # prints "23"; 

 

Session 5: Hashes CBSU Perl for Biologists 1.2 7 



Review of Session 4 

@array = (1, 5, "a", 77, "abcd", 99); 

 

• @spliced_array = splice (@array, $start_index): 
Removes everything @array starting at $start_index, 
and returns it to @spliced_array 
$start_index = 3; 

@spliced_array = splice (@array, $start_index); 

print $spliced_array[0]; # prints "abcd"; 

Session 5: Hashes CBSU Perl for Biologists 1.2 8 



Review of Session 4 

• @spliced_array = splice (@array, $start_index, $length): 
Removes $length elements from @array starting at 
$start_index, and returns it to @spliced_array 

 

• @spliced_array = splice (@array, $start_index, $length, 
@replacement): Removes $length elements @array starting 
at $start_index, and returns it to @spliced_array. Replaces 
removed with @replacement 

Session 5: Hashes CBSU Perl for Biologists 1.2 9 



Review of Session 4 

• @string_array = split /pattern/, $string 

 
$string = "1-800-123-4567"; 

@number_parts = split /-/, $string; 

print "$number_parts[0]"; # prints "1“ 

print "$number_parts[3]"; # prints "4567" 

Session 5: Hashes CBSU Perl for Biologists 1.2 10 



Review of Session 4 

• The Foreach loop 

 
foreach $element (@number_parts) 

{ 

    print "$element\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 11 



Exercise Review 

A. Modify the program from session 3 exercise 3 (random DNA sequence) to 
produce a random DNA sequence of 5 Mb (originally 4.1kb), store the 
sequence string in a variable and discard the rest of the program (the part 
printing it to STDERR). 

for($i=1; $i<=5_000_000; $i++) 
 

 

B. Take the random DNA string obtained in step 1 and apply in silico 
restriction enzyme by cutting the DNA at each occurrence of the pattern 
of “ATGCAT” . The easiest way to do it is to use split function with 
ATGCAT as the splitting pattern, store the DNA fragments in an array.  

@fragments = split /ATGCAT/, $seq; 
 

 

 
Session 5: Hashes CBSU Perl for Biologists 1.2 12 



Exercise Review 

 

 

 

C. Create a new array containing lengths of the strings from the array 
obtained in step 2 (length($str)function returns the length of a 
string $str). Unlike the real restriction enzyme, split function 
removes ATGCAT pattern, to correct for this you need to add 6 to each 
middle fragment, 1 to first and 5 to the last (simulating cutting 
A{cut}TGCAT). 

 

Session 5: Hashes CBSU Perl for Biologists 1.2 13 



Exercise Review 

$n=0; 

foreach $frg (@fragments) 

{ 

    if($n==0) 

    { 

        $fraglen[$n] = length($frg) + 1; 

    } 

    elsif($n==$#fragments) 

    { 

        $fraglen[$n] = length($frg) + 5; 

    } 

    else 

    { 

        $fraglen[$n] = length($frg) + 6; 

    } 

    $n++; 

} 

 

Session 5: Hashes CBSU Perl for Biologists 1.2 14 



Exercise Review 

D. Sort the lengths array. Remember that sort function by default sorts in 
string context (in alphabetical order i.e. 123 comes before 99), you need 
to provide sorting function to sort numerically :  
sort {$a <=> $b} @array 

Print out the sorted fragment lengths.  

 

@fraglen = sort {$a <=> $b} @fraglen; 

foreach $frag (@fraglen) 

{ 

    print "$frag\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 15 



Session 5: Hashes CBSU Perl for Biologists 1.2 16 



What is a Hash? 

Index 

Array Hash 

Value Value Key 

0 

1 

2 

3 

4 

apple 

banana 

cranberry 

daikon 

eggplant purple veggie 

white tuber 

red berry 

yellow fruit 

red fruit 

eggplant 

daikon 

cranberry 

banana 

apple 

5 81 nine squared 81 

Session 5: Hashes CBSU Perl for Biologists 1.2 17 



What is a Hash? 
 

• Data structure similar to an Array. 

- Use to be known as “Associative Arrays” 

• Indexed by an arbitrary unique string, the Key 

• Each Key points to an element, the Value 

• Each Value is an arbitrary scalar 

• Establish relationship between Key and Value 

Session 5: Hashes CBSU Perl for Biologists 1.2 18 



What is a Hash? 

• Keys must be UNIQUE! 

• Keys are strings! 

• Only one Value per Key! 

 

THERE IS NO “ORDER”! 
 

Session 5: Hashes CBSU Perl for Biologists 1.2 19 



Hash Syntax 

• Declaring a variable to be a Hash, use “%” 
%hash; 

 

• Can initialize a hash using an Array 
%hash = ('red fruit', 'apple', 

'yellow fruit', 'banana', 'nine 

squared', 81); 

 

Session 5: Hashes CBSU Perl for Biologists 1.2 20 



Hash Syntax 

• Accessing individual Hash element 
$hash{'red fruit'}; 

 

• Equivalently 
$key = 'red fruit'; 

$hash{$key}; 

Session 5: Hashes CBSU Perl for Biologists 1.2 21 



Hash Syntax 

• Assigning individual Hash element 
$hash{'purple veggie'} = 

'eggplant'; 

 

• Can initialize a array using a Hash 

@array = %hash; 

Session 5: Hashes CBSU Perl for Biologists 1.2 22 



The Big Arrow 

=> 
 

• Also known as “The Fat Comma” 

• A way to “spell” a comma 

• Simplifies Hash Declaration 

Session 5: Hashes CBSU Perl for Biologists 1.2 23 



The Big Arrow 

%hash = ( 

    'red fruit'     => 'apple', 

    'yellow fruit'  => 'banana', 

    'red berry'     => 'cranberry', 

    'white tuber'   => 'daikon', 

    'purple veggie' => 'eggplant', 

    'nine squared'  => 81, 

    ); 

Session 5: Hashes CBSU Perl for Biologists 1.2 24 



Hash Functions 

• keys(%hash): returns an Array of the Keys 
@hash_keys = keys (%hash); 

@hash_keys = keys %hash; 

 

• values(%hash): returns an Array of the Values 
@hash_values = values (%hash); 

@hash_values = values %hash; 

Session 5: Hashes CBSU Perl for Biologists 1.2 25 



Hash Functions 

• Order of elements is consistent between 
arrays returned for Keys and Values 

• First element of Keys will be the key to the 
hash that returns the first element of Values 

Session 5: Hashes CBSU Perl for Biologists 1.2 26 



Hash Functions 

• exists($hash{$key}): returns true if $key exists 
in the hash 

exists ($hash{$key1}); 

exists $hash{$key1}; 

 

• defined($hash{$key}): returns true if $key has 
a defined Value in the hash 
defined ($hash{$key1}); 

defined $hash{$key1}; 

 Session 5: Hashes CBSU Perl for Biologists 1.2 27 



Hash Functions 

• delete($hash{$key}): deletes $key and 
associated Value from the hash 
$hash{'green fruit'} = 'kiwi'; 

delete ($hash{'green fruit'}); 

 

• reverse(%hash): returns Hash with Keys and 
Values swapped 
%reverse_hash = reverse (%hash); 

%reverse_hash = reverse %hash; 

Session 5: Hashes CBSU Perl for Biologists 1.2 28 



Hash Functions 

• each(%hash): returns the next Key Value pair 
as a 2 element array 
@pair = each (%hash); 

print "$pair[0] = $pair[1]\n"; 

Session 5: Hashes CBSU Perl for Biologists 1.2 29 



Hash Functions 

• Lets use a while loop to go through the rest of 
the hash using the Each function 

 
while (@pair = each (%hash)) 

{ 

    print "$pair[0] = $pair[1]\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 30 



Hash Foreach 

• Just like for an array, you can use a foreach 
loop to look through a hash 

 
foreach $key (keys %hash) 

{ 

    print "$key = $hash{$key}\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 31 



Hash Sort 

• What if we want to order a hash? Sort the 
keys! 

 
foreach $key (sort keys (%hash)) 

{ 

    print "$key = $hash{$key}\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 32 



Hash Sort 

• More likely we’ll want to sort by value 

 

 
foreach $key (sort {$hash{$a} <=> $hash{$b}} keys (%hash)) 

{ 

    print "$key = $hash{$key}\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 33 



Hash Nuances 

• Keys are strings, perl will convert if otherwise 
%hash = ( 

    'red fruit'    => 'apple', 

    'yellow fruit' => 'banana', 

    'nine squared' => 81, 

    5/2            => '5 over 2', 

    ); 

print "->$hash{'5/2'}<-\n"; 

print "$hash{'2.5'}\n"; 

Session 5: Hashes CBSU Perl for Biologists 1.2 34 



Hash Nuances 

• Keys are unique, you will lose data if you try to 
assign more than one Value to a Key 

 
$hash{'red fruit'} = 'cherry'; 

 

print "$hash{'red fruit'}\n"; 

Session 5: Hashes CBSU Perl for Biologists 1.2 35 



Hash Nuances 

• Declare a new Key and modify it in one line 

 
$hash{'test int'} += 1; 

print "$hash{'test int'}\n"; 

 

$hash{'test string'} .= 'Hello 

World!'; 

print "$hash{'test string'}\n"; 

Session 5: Hashes CBSU Perl for Biologists 1.2 36 



Hash Nuances 

• Reverse function can cause you to lose data 
%hash = ( 

    'red fruit'          => 'apple', 

    'technology company' => 'apple', 

    ); 

%reverse_hash = reverse (%hash); 

while (@pair = each (%reverse_hash)) 

{ 

    print "$pair[0] = $pair[1]\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 37 



The Environment Hash 

• Perl runs in a certain environment 

• Most cases this will be linux 

• %ENV hash contains information about the 
environment that the perl program is running 
in 

Session 5: Hashes CBSU Perl for Biologists 1.2 38 



The Environment Hash 

foreach $key (keys %ENV) 

{ 

    print "$key\n"; 

} 

 

print "$ENV{'PATH'}\n"; 

 

• Now lets set a new environment variable and 
try to access it 

Session 5: Hashes CBSU Perl for Biologists 1.2 39 



Hash Example 

• Lets redo part D of last week’s exercise with 
hashes 

• List out the steps that we need to take to 
make bins to use in Excel to make a histogram 

– Create a hash where Keys are bins and values are 
bin counts 

– Go through the list of fragment lengths adding 
one to the correct bin 

– Print out results in order of bin 

Session 5: Hashes CBSU Perl for Biologists 1.2 40 



Hash Example 

 

• Creating a the hash table with correct bin 
values 

• Bin values are multiples of 2000 up to 100,000 

Session 5: Hashes CBSU Perl for Biologists 1.2 41 



Hash Example 

 

$bin = 2000; 

while ($bin <= 100000) 

{ 

    $bin_counts{$bin} = 0; 

    $bin += 2000; 

} 

 

Session 5: Hashes CBSU Perl for Biologists 1.2 42 



Hash Example 

• Traverse through the fragment length array, 
adding to the correct bin 

 
foreach $element (@fraglen) 

{ 

    $this_bin = 2000 * int($element/2000) + 2000; 

    $bin_counts{$this_bin}++; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 43 



Hash Example 

• Print the results in order of bin 

 
foreach $key (sort {$a <=> $b} keys %bin_counts) 

{ 

    print "$key\t$bin_counts{$key}\n"; 

} 

Session 5: Hashes CBSU Perl for Biologists 1.2 44 



Exercises 

1. Modify the code from session 3 exercise 3 to generate a 9kb 
long random DNA sequence. Save this sequence to a 
variable. 

2. Create a hash where the keys are unique sequences of 3 
base pairs and the values are the counts of how often the 
key appeared in the randomly generated sequence. Print 
out/save to a file these keys and values 

 

• There are numerous ways to accomplish creating the hash 
from the string, a few hints: 
– Look at the substring function from Session 2 

– Modify the creation of the sequence string, look at the split function 
from Session 4, and the % (mod) operator 

 
Session 5: Hashes CBSU Perl for Biologists 1.2 45 



Exercises 

• Bonus: Print out/save keys and values sorted 
by values in decreasing order 

 

• Person with the most number (at least 3) of 
distinct methods of populating a hash from a 
string wins 50 FREE CBSU computing hours! 

Session 5: Hashes CBSU Perl for Biologists 1.2 46 


