Perl for Biologists

Session 5
April 1, 2015

Hashes

Jon Zhang

Review of Session 4

* Array explicit declaration
@array = (1, 5, "a", 77, "abcd", 99);

¢ Array range declaration
darray = 1..9;

* Array quoted word declaration

darray = gw(jon zhang perl 2013);
darray = gw*jon zhang perl 2013%*;

Session 5: Hashes CBSU Perl for Biologists 1.2

Review of Session 4

* Array access

darray = (1, 5, "a", 77, "abcd", 99);
print Sarray[0]; # prints "1%

print Sarray[4]; # prints "abcd™

print Sarray[5]; # prints "9O%

S1 = 33
print Sarray([$i]; # prints "77"

Session 5: Hashes CBSU Perl for Biologists 1.2

Review of Session 4

RQarray = (1, 5, "a", 77, "abcd", 99);

e push (@array, Svalue): Appends Svalue to the end of

@array

Svalue = 88;

push (Qarray, S$value);

print Sarrayl[6]; # prints "88"

* Svalue = pop (@array): Removes last element of @array,
sets Svalue to the removed element

$value = pop (@array);
print $value; # prints "88"

Session 5: Hashes CBSU Perl for Biologists 1.2

Review of Session 4

darray = (1, 5, "a", 77, "abcd", 99);

e Svalue = shift (@array): Removes first element of @array, sets
Svalue to the removed element
Svalue = shift (Qarray):;
print Svalue; # prints "1VW
print Sarray[0]; # prints "5"

* unshift (@array, Svalue): Adds Svalue to the front of @array,
all other elements shifted back one index

Svalue = 1;
unshift (Qarray, S$Svalue);
print Sarray[0]; # prints "1"

Session 5: Hashes CBSU Perl for Biologists 1.2

Review of Session 4

darray = (1, 5, "a", 77, "abcd", 99);

* (@reverse_array = reverse @array: Sets
@reverse_array as a reverse order @array

@reverse array = reverse ((larray);
print Sreverse arrayl[0]; # prints "99"

e @sorted array = sort @array: Sets @sorted_array as
an ACSII sorted @array

@sorted array = sort (@array;
print Ssorted array[5]; # prints "abcd"

Session 5: Hashes CBSU Perl for Biologists 1.2

Review of Session 4

Qarray = (5, 7, 23, 8, 1, 4);

 @sorted _array = sort {Sa <=> Sb} @array: Sets
@sorted_array as a numeric sorted @array
@sorted array = sort {$a <=> S$b} @array;
print $sorted array[0]; # prints "1";
print S$sorted arrayl[5]; # prints "23";

Session 5: Hashes CBSU Perl for Biologists 1.2

Review of Session 4

darray = (1, 5, "a", 77, "abcd", 99);

* @spliced array = splice (@array, Sstart_index):
Removes everything @array starting at Sstart_index,
and returns it to @spliced_array

Sstart index = 3;

@spliced array = splice (Qarray, $start index);
prints "abcd";

print $spliced arrayl[0];

Session 5: Hashes CBSU Perl for Biologists 1.2

Review of Session 4

o @spliced_array = splice (@array, Sstart_index, Slength):
Removes Slength elements from @array starting at
Sstart_index, and returns it to @spliced_array

« @spliced array = splice (@array, Sstart_index, Slength,
@replacement): Removes Slength elements @array starting
at Sstart_index, and returns it to @spliced_array. Replaces
removed with @replacement

Review of Session 4

* @string_array = split /pattern/, Sstring

Sstring = "1-800-123-4567";
@number parts = split /-/, S$string;
print "Snumber parts[0]"; # prints "1V

print "Snumber parts[3]"; # prints "4567"

Session 5: Hashes CBSU Perl for Biologists 1.2 10

Review of Session 4
* The Foreach loop

foreach Selement (€@number parts)

{

print "Selement\n";

Session 5: Hashes CBSU Perl for Biologists 1.2

11

Exercise Review

A. Modify the program from session 3 exercise 3 (random DNA sequence) to
produce a random DNA sequence of 5 Mb (originally 4.1kb), store the
sequence string in a variable and discard the rest of the program (the part
printing it to STDERR).

for ($i=1; $i<=5 000 000; S$i++)

B. Take the random DNA string obtained in step 1 and apply in silico
restriction enzyme by cutting the DNA at each occurrence of the pattern
of “ATGCAT” . The easiest way to do it is to use split function with
ATGCAT as the splitting pattern, store the DNA fragments in an array.

@fragments = split /ATGCAT/, Sseq;

Session 5: Hashes CBSU Perl for Biologists 1.2 12

Exercise Review

Create a new array containing lengths of the strings from the array
obtained in step 2 (Length (Sstxr) function returns the length of a
string Sstr). Unlike the real restriction enzyme, split function
removes ATGCAT pattern, to correct for this you need to add 6 to each

middle fragment, 1 to first and 5 to the last (simulating cutting
A{cut}TGCAT).

Exercise Review

$n=0;
foreach $frg (@fragments)
{

if (Sn==0)

{

}

$fraglen[Sn] = length($Sfrg) + 1;

elsif (Sn==$#fragments)

{
}
else

{

}
Sn++

Session 5: Hashes

$fraglen[Sn] = length($frg) + 5;

Sfraglen[Sn] = length($frg) + 6;

.
14

CBSU Perl for Biologists 1.2

14

Exercise Review

D. Sort the lengths array. Remember that sort function by default sorts in

string context (in alphabetical order i.e. 123 comes before 99), you need
to provide sorting function to sort numerically :

sort {$a <=> S$b} Qarray

Print out the sorted fragment lengths.

@fraglen sort {Sa <=> S$b} (@fraglen;
foreach Sfrag (Q@fraglen)
{

print "Sfrag\n";

Session 5: Hashes CBSU Perl for Biologists 1.2 15

Frequency

W Frequency

.

100

90

80

70

60

30

40

30

20

10 4

Vo]
i

ERs]
00000T
00086
00096
000t6
00026
00006
00088
00098
DootR
000z8
00008
0008 ¢
0009¢
000t
000Z ¢
0000s
00089
00939
0pjt9
oboze
06ioo
0@as
offoos
T
080zs
08005
oB)EY
ogday
000t
000zt
0000t
000gE
0009€E
000tE
000ZE
00008
0008z
0009z
000tz
000zz
00002
00081
(%]
06091
AT
0G0z T
0ED0T
ofs
0gna
ot

0oonz

What is a Hash?

Array

Hash

Index Value
0 apple
1 banana
2 cranberry
3 daikon
4 eggplant
5 81

Key Value
red fruit apple
yellow fruit banana

red berry cranberry
white tuber daikon
purple veggie eggplant
nine squared 81

Session 5: Hashes

CBSU Perl for Biologists 1.2

17

What is a Hash?

Data structure similar to an Array.

- Use to be known as “Associative Arrays”
Indexed by an arbitrary unique string, the Key
Each Key points to an element, the Value
Each Value is an arbitrary scalar

Establish relationship between Key and Value

What is a Hash?

* Keys must be UNIQUE!
* Keys are strings!
* Only one Value per Key!

THERE IS NO “ORDER”!

Hash Syntax

* Declaring a variable to be a Hash, use “%”

$hash;

* Can initialize a hash using an Array

©)

thash = ('red fruit', 'apple',
'vellow fruit', 'banana', 'nine
squared', 81);

Session 5: Hashes CBSU Perl for Biologists 1.2 20

Hash Syntax

* Accessing individual Hash element
Shash{'red fruit'};

* Equivalently
Skey = 'red fruit';
Shash{Skev};

Session 5: Hashes CBSU Perl for Biologists 1.2

21

Hash Syntax

* Assigning individual Hash element

Shash{'purple veggie'} =
'eggplant';

* Can initialize a array using a Hash

darray = %Shash;

Session 5: Hashes CBSU Perl for Biologists 1.2

22

The Big Arrow
=>

* Also known as “The Fat Comma”
* A way to “spell” a comma
* Simplifies Hash Declaration

shash

Session 5: Hashes

The Big Arrow

=

'red fruit' =>
'vellow fruit' =>
'red berry'’ =>
'white tuber' =>

'purple veggilie' =>
'nine squared' =>

) ;

CBSU Perl for Biologists 1.2

'apple',
'"banana',
'cranberry'
'daikon',
'eggplant',
81,

24

Hash Functions

* keys(%hash): returns an Array of the Keys
dhash keys = keys (%Shash);
@hash keys = keys %hash;

e values(%hash): returns an Array of the Values
@hash values = walues (%hash);

@hash values = wvalues %hash;

Session 5: Hashes CBSU Perl for Biologists 1.2 25

Hash Functions

e Order of elements is consistent between
arrays returned for Keys and Values

* First element of Keys will be the key to the
hash that returns the first element of Values

Hash Functions

* exists(Shash{Skey}): returns true if Skey exists
in the hash

exists (Shash{Skevyl});
exists Shash{Skevl};

* defined(Shash{Skey}): returns true if Skey has
a defined Value in the hash
defined (Shash{Skevyl});
defined Shash{Skeyl};

Session 5: Hashes CBSU Perl for Biologists 1.2

27

Hash Functions

* delete(Shash{Skey}): deletes Skey and
associated Value from the hash

Shash{'green fruit'} = 'kiwi';
delete ($Shash{'green fruit'});

* reverse(%hash): returns Hash with Keys and
Values swapped
sreverse hash = reverse (Shash);
sreverse hash = reverse Shash;

Session 5: Hashes CBSU Perl for Biologists 1.2

Hash Functions

e each(%hash): returns the next Key Value pair
as a 2 element array

dpair = each (%hash);

print "Spair([0] = S$pair[l]\n";

Session 5: Hashes CBSU Perl for Biologists 1.2

29

Hash Functions

* Lets use a while loop to go through the rest of
the hash using the Each function

while (@pair = each (%hash))

{
print "Spair[0] = Spair[l]\n";

Session 5: Hashes CBSU Perl for Biologists 1.2 30

Hash Foreach

* Just like for an array, you can use a foreach
loop to look through a hash

foreach Skey (keys %hash)

{
print "Skey = Shash{Skey}\n"

Session 5: Hashes CBSU Perl for Biologists 1.2

oo

31

Hash Sort

e What if we want to order a hash? Sort the
keys!

foreach Skey (sort keys (%hash))
{

print "Skey = Shash{Skey}\n";

Session 5: Hashes CBSU Perl for Biologists 1.2

32

Hash Sort

 More likely we’ll want to sort by value

foreach Skey
{

(sort {Shash{$a} <=> Shash{S$b}} keys

print "Skey = Shash{Skey}\n";

Session 5: Hashes

CBSU Perl for Biologists 1.2

($hash))

33

Hash Nuances

* Keys are strings, perl will convert if otherwise

shash = (
'red fruit' => 'apple',
'vellow fruit' => 'banana',
'nine squared' => 81,
5/2 => '5 over 2',

) 7
print "->Shash{'5/2'}<-\n";
print "Shash{'2.5'}\n";

Session 5: Hashes CBSU Perl for Biologists 1.2 34

Hash Nuances

* Keys are unique, you will lose data if you try to
assign more than one Value to a Key

Shash{'red fruit'} = 'cherry';

print "Shash{'red fruit'}\n";

Session 5: Hashes CBSU Perl for Biologists 1.2 35

Hash Nuances

* Declare a new Key and modify it in one line

Shash{'test int'} += 1;
print "Shash{'test int'}\n";

Shash{'test string'} .= 'Hello
World!"';

print "Shash{'test string'}\n";

Session 5: Hashes CBSU Perl for Biologists 1.2 36

Hash Nuances

* Reverse function can cause you to lose data

shash = (
'red fruit' => 'apple',
'"technology company' => 'apple',
) ;

sreverse hash = reverse (%hash);

while (@pair = each (Sreverse hash))

{
print "Spair([0] = Spair[l]\n";

Session 5: Hashes CBSU Perl for Biologists 1.2

The Environment Hash

Perl runs in a certain environment
Most cases this will be linux

%ENV hash contains information about the
environment that the perl program is running
N

The Environment Hash

foreach Skey (keys SENV)

{
print "Skey\n";

print "SENV{'PATH'}\n";

* Now lets set a new environment variable and
try to access it

Session 5: Hashes CBSU Perl for Biologists 1.2

39

Hash Example

_ets redo part D of last week’s exercise with
nashes

List out the steps that we need to take to
make bins to use in Excel to make a histogram

— Create a hash where Keys are bins and values are
bin counts

— Go through the list of fragment lengths adding
one to the correct bin

— Print out results in order of bin

Hash Example

* Creating a the hash table with correct bin
values

* Bin values are multiples of 2000 up to 100,000

Hash Example

Spbin = 2000;
while (Sbin <= 100000)
{

Sbin counts{S$bin} =
Sbin += 2000;

Session 5: Hashes CBSU Perl for Biologists 1.2

42

Hash Example

* Traverse through the fragment length array,
adding to the correct bin

foreach Selement (@fraglen)

{
Sthis bin = 2000 * int(Selement/2000) + 2000;
$bin counts{Sthis bin}++;

Session 5: Hashes CBSU Perl for Biologists 1.2

43

Hash Example
* Print the results in order of bin

foreach Skey (sort {Sa <=> $Sb} keys %bin counts)

{
print "Skey\t$bin counts{$key}\n";

Session 5: Hashes CBSU Perl for Biologists 1.2

44

Exercises

Modify the code from session 3 exercise 3 to generate a 9kb
long random DNA sequence. Save this sequence to a
variable.

Create a hash where the keys are unique sequences of 3
base pairs and the values are the counts of how often the
key appeared in the randomly generated sequence. Print
out/save to a file these keys and values

There are numerous ways to accomplish creating the hash
from the string, a few hints:
— Look at the substring function from Session 2

— Modify the creation of the sequence string, look at the split function
from Session 4, and the % (mod) operator

Exercises

* Bonus: Print out/save keys and values sorted
by values in decreasing order

* Person with the most number (at least 3) of
distinct methods of populating a hash from a
string wins 50 FREE CBSU computing hours!

