
Perl for Biologists

Session 6
April 8, 2015

Files, directories and I/O

operations

Jaroslaw Pillardy

Session 6: Files, directories and I/O operations Perl for Biologists 1.2 1

Reminder: What is a Hash?

Index

Array Hash

Value ValueKey

0

1

2

3

4

apple

banana

cranberry

daikon

eggplant purple veggie

white tuber

red berry

yellow fruit

red fruit

eggplant

daikon

cranberry

banana

apple

5 81 nine squared 81

Session 6: Files, directories and I/O

operations
Perl for Biologists 1.2 2

Reminder: Hash Syntax

• Declaring a variable to be a Hash, use “%”

%hash;

• Can initialize a hash using an Array

%hash = ('red fruit', 'apple',

'yellow fruit', 'banana', 'nine

squared', 81);

Session 6: Files, directories and I/O

operations
Perl for Biologists 1.2 3

Reminder: Hash Syntax

• Accessing individual Hash element

$hash{'red fruit'};

• Equivalently

$key = 'red fruit';

$hash{$key};

Session 6: Files, directories and I/O

operations
Perl for Biologists 1.2 4

Reminder: Hash Syntax

• Assigning individual Hash element

$hash{'purple veggie'} =

'eggplant';

• Can initialize a array using a Hash

@array = %hash;

Session 6: Files, directories and I/O

operations
Perl for Biologists 1.2 5

Reminder: The Big Arrow

%hash = (

'red fruit' => 'apple',

'yellow fruit' => 'banana',

'red berry' => 'cranberry',

'white tuber' => 'daikon',

'purple veggie' => 'eggplant',

'nine squared' => 81,

);

Session 6: Files, directories and I/O

operations
Perl for Biologists 1.2 6

Reminder: Hash Functions

• keys(%hash): returns an Array of the Keys

@hash_keys = keys (%hash);

@hash_keys = keys %hash;

• values(%hash): returns an Array of the Values

@hash_values = values (%hash);

@hash_values = values %hash;

Session 6: Files, directories and I/O

operations
Perl for Biologists 1.2 7

Reminder: Hash Functions

• each(%hash): returns the next Key Value pair

as a 2 element array

@pair = each (%hash);

print "$pair[0] = $pair[1]\n";

while (@pair = each (%hash))

{

print "$pair[0] = $pair[1]\n";

}
Session 6: Files, directories and I/O

operations
Perl for Biologists 1.2 8

Perl for Biologists 1.2 9

Session 5 Exercises Review

1. Modify the code from session 3 exercise 3 to generate a 9kb long random

DNA sequence. Save this sequence to a variable.

2. Create a hash where the keys are unique sequences of 3 base pairs and the

values are the counts of how often the key appeared in the randomly

generated sequence. Print out/save to a file these keys and values

Bonus: Print out/save keys and values sorted by values in decreasing order

/home/jarekp/perl_05/exercise1.pl

Person with the most number (at least 3) of distinct methods of populating a hash

from a string wins 50 FREE CBSU computing hours!

/home/jarekp/perl_05/exercise2.pl

/home/jarekp/perl_05/exercise3.pl

/home/jarekp/perl_05/exercise4.pl

/home/jarekp/perl_05/exercise5.pl

Session 6: Files, directories and I/O operations

Perl for Biologists 1.2 10Session 6: Files, directories and I/O operations

Each program has three default input/output objects

associated with it

• input stream – usually keyboard input: STDIN

• output stream – usually screen: STDOUT

• error stream – usually screen: STDERR

Simple Line Input

Perl for Biologists 1.2 11Session 6: Files, directories and I/O operations

#!/usr/local/bin/perl

$svar = <STDIN>; #get one line of std input

print STDOUT "1. [$svar]\n";

chomp($svar);

print STDERR "2. [$svar]\n";

print "3. [$svar]\n";

Perl for Biologists 1.2 12

You can open file and create a stream with open function

open HANDLE, "/path/filename";

the above opens the file for reading (default)

Opening files as streams

Session 6: Files, directories and I/O operations

name of the stream,

also called filehandle

or iohandle or handle

file name: relative or

absolute

Perl for Biologists 1.2 13

You can open file for writing:

open HANDLE, ">/path/filename";

The file will be created if it doesn't exist. If it does exist it will

be overwritten.

Opening file for append requires ‘>>’

open HANDLE, ">>/path/filename";

Opening files as streams

Session 6: Files, directories and I/O operations

Perl for Biologists 1.2 14

Function open returns value indicating success or failure

$res = open HANDLE, ">/path/filename";
if($res)

{

print "open successful\n";

}

or

if(!open HANDLE, ">/path/filename")

{

print "open failed\n";

}

Session 6: Files, directories and I/O operations

Perl for Biologists 1.2 15

If there is an error special variable $! is set to an error text

message generated by the system (like “access denied”)

if(!open HANDLE, ">/path/filename")

{

print "open failed\nError is: $!";

}

Session 6: Files, directories and I/O operations

Perl for Biologists 1.2 16

There is a short version of if, especially useful in one-line statements:

open HANDLE, ">filename" or die "Open failed\nError is: $!";

Session 6: Files, directories and I/O operations

if substitute: execute whatever is past

‘or’ if previous statement returned

false

print the message into STDERR and

terminate the program

Perl for Biologists 1.2 17

There is a short version of if, especially useful in one-line statements:

open HANDLE, ">filename" or print "Open failed\nError: $!";

Session 6: Files, directories and I/O operations

if substitute: execute whatever is past

‘or’ if previous statement returned

false

print the message into STDOUT

Perl for Biologists 1.2 18

Once opened, the file can be read the same way as <STDIN>

$svar=<in>;

the file should be closed with close when not needed – it will flush

the buffers

close(out);

Session 6: Files, directories and I/O operations

Perl for Biologists 1.2 19Session 6: Files, directories and I/O operations

script1.pl (1)

Script to read file1 and copy the content to file2

File names read from arguments of the script

Every other new line replaced with a space

Perl for Biologists 1.2 20Session 6: Files, directories and I/O operations

script1.pl (1)

#!/usr/local/bin/perl

#we want 2 file names as parameters

if($#ARGV != 1)

{

print STDERR "USAGE: script1.pl file_name1 file_name2\n";

exit;

}

#now try to open files

open in, $ARGV[0] or die "ERROR1: $!\n";

open out, ">" . $ARGV[1] or die "ERROR2: $!\n";

Perl for Biologists 1.2 21Session 6: Files, directories and I/O operations

script1.pl (2)

#lets read file 1 and write file 2 in a loop

#lets replace line endings with space on every other line

#when writing to file 2

$n=1;

while($txt=<in>)

{

chomp $txt; #remove ending \n character

print "line $n length is " . length($txt) . "\n";

print out "$txt";

if($n % 2 == 0)

{

print out "\n";

}

else

{

print out " ";

}

$n++;

}

#close files

close(in);

close(out);

Perl for Biologists 1.2 22

What happens when we forget to open the file?

If reading, we will always get an empty string.

If writing, the data is ignored (goes to /dev/null).

Session 6: Files, directories and I/O operations

Perl for Biologists 1.2 23

What happens when we forget to close the file?

The file will be closed automatically when program exits, or when

the handle is reused (opened again).

However, if the program crashes, the data being written to a file

may be lost.

The data is written to a buffer first, then transferred to the disk

later. This procedure speeds up read/write a lot, but if interrupted

data may be lost.

Session 6: Files, directories and I/O operations

Perl for Biologists 1.2 24Session 6: Files, directories and I/O operations

Perl script

print HANDLE

RAM temporary

storage area

(BUFFER)

Permanent storage

(HARD DRIVE)

FAST: immediate write

SLOW: delayed write, usually when

buffer full, or after timeout

Perl for Biologists 1.2 25Session 6: Files, directories and I/O operations

Very little

memory used by

processes

.. yet the memory is almost

full – here are the buffers

Perl for Biologists 1.2 26

Buffering is a feature of both system and Perl interpreter, and it can

be controlled by setting special variable $|

$| = 1; #don’t buffer current stream

$| = 0; #do buffer current stream

A stream is made current by using select() function

$prev = select(out);

A stream handle can be kept in a variable instead of bareword

open $handle, "filename";

Session 6: Files, directories and I/O operations

stream now selected for changing
previously selected steam

Perl for Biologists 1.2 27Session 6: Files, directories and I/O operations

Script printing random numbers to a file

File name is the argument

User decides to buffer the output or not

script2.pl (1)

Perl for Biologists 1.2 28Session 6: Files, directories and I/O operations

#!/usr/local/bin/perl

if($#ARGV < 0)

{

print STDERR "USAGE: script2.pl file_name\n";

exit;

}

print "Do you want to flush? (y/n) ";

while($fl=<STDIN>)

{

chomp $fl;

if($fl ne "y" && $fl ne "n")

{

print "error: invalid input $fl\n";

print "Do you want to flush? (y/n) ";

}

else

{

last;

}

}

script2.pl (1)

Perl for Biologists 1.2 29Session 6: Files, directories and I/O operations

open out, ">" . $ARGV[0] or die "ERROR: $!\n";

if($fl eq "y")

{

$prev = select(out); #choose which stream buffer we will modify

$| = 1; #switch buffering off in selected stream

select($prev); #switch back to previously selected stream

}

$n=0;

while($n<1000_000_000)

{

$n++;

if($n % 1000 == 0)

{printf out "%010d %17.16f\n", $n, sqrt(rand(100));}

}

close(out);

script2.pl (2)

Perl for Biologists 1.2 30

Binary files

Session 6: Files, directories and I/O operations

By default, any stream opened is treated as ASCII (text) stream.

Reading a file in ASCII (text) mode means some binary characters

may be lost (converted) and in general the written binary file

becomes corrupted.

See what happens when script1.pl is used for

~jarekp/perl_06/picture.jpg (you can view picture with eog).

File handle must be marked as binary in order to stop character

conversion.

Perl for Biologists 1.2 31

Binary files

Session 6: Files, directories and I/O operations

open HANDLE1, "/path/filename1";
binmode(HANDLE1);

$count = read(HANDLE1, $data , $size);

open HANDLE2, ">/path/filename2";

binmode(HANDLE2);
print HANDLE2 $data;

how many bytes have

been read

binary data from file is

stored in a variable

how many bytes to

read

Perl for Biologists 1.2 32Session 6: Files, directories and I/O operations

script3.pl

Script copying binary file

Source file is argument 1, destination file argument 2

Print number of bytes copied

Perl for Biologists 1.2 33Session 6: Files, directories and I/O operations

script3.pl

#!/usr/local/bin/perl

#we want 2 file names as parameters

if($#ARGV != 1)

{

print STDERR "USAGE: script3.pl file_name1 file_name2\n";

exit;

}

open in, $ARGV[0] or die "ERROR1: $!\n";

binmode(in);

open out, ">" . $ARGV[1] or die "ERROR2: $!\n";

binmode(out);

#lets read file 1 and write file 2 in a loop

$n=0;

while($cnt=read(in, $data, 1024))

{

$n += $cnt;

print "$n bytes total read so far, $cnt this iteration\n";

print out $data or die "Error writing file\n$!";

}

print "$n bytes copied\n";

#close files

close(in);

close(out);

Perl for Biologists 1.2 34

Opening pipelines

Session 6: Files, directories and I/O operations

Perl can open output stream of a program and read it as a file.

open HANDLE, "program1 |";

The file handle will reach the end when program1 ends.

open HANDLE, "program1 | program2 |";

output from program1 goes

as input to program2 output from program2 goes

to our file handle

output from program1 goes

to our file handle

Perl for Biologists 1.2 35

Executing a program inside Perl

Session 6: Files, directories and I/O operations

Perl can execute any program from inside a script:

system("program1 arg1 arg2");

system("program1 arg1 arg2 1> out");

system("program1 arg1 arg2 1> out 2> err");

Perl script will WAIT until program1 finishes

STDOUT from program1 will go to script’s STDOUT

STDERR will go to script’s STDERR

STDOUT from program1 will go to file out

STDERR will go to script’s STDERR

STDOUT from program1 will go to file out

STDERR will go to file err

Perl for Biologists 1.2 36

Executing a program inside Perl

Session 6: Files, directories and I/O operations

system("program1 arg1 arg2 1> out 2> err &");

now Perl WILL NOT WAIT for program1 to finish, will continue

immediately and program1 will run in parallel.

Perl for Biologists 1.2 37

Executing a program inside Perl

Session 6: Files, directories and I/O operations

$n = system("program1 arg1 arg2");

system() returns an integer representing completion code of

the program

usually 0 for success and something else for error.

Perl for Biologists 1.2 38

Executing a program inside Perl

Session 6: Files, directories and I/O operations

system("program1 arg1 arg2");

can be also written using back quotes, in this case the return is the

OUTPUT of the command

$str = `program1 arg1 arg2`

Perl for Biologists 1.2 39Session 6: Files, directories and I/O operations

script4.pl
Script to find the number of sequences and

number of amino acids in swissprot BLAST database

Perl for Biologists 1.2 40Session 6: Files, directories and I/O operations

script4.pl
#!/usr/local/bin/perl

open in, "fastacmd -d /shared_data/genome_db/BLAST_NCBI/swissprot

-p T -D 1 |" or die "ERROR: $!\n";

$n=0;

$aa=0;

$|=1;

while($txt=<in>)

{

if(substr($txt, 0, 1) eq ">")

{

$n++;

if($n % 1000 == 0){print ".";}

if($n % 80_000 == 0){print "\n";}

}

else

{

$aa += length($txt) - 1;

}

}

if($n % 80_000 != 0){print "\n";}

close(in);

print "swissprot contains $n sequences and $aa aa\n";

Perl for Biologists 1.2 41

Logical operators for files and directories

Session 6: Files, directories and I/O operations

-e “name” file or directory exists

-f “name” name is a file

-d “name” name is a directory

-s “name” name is non-zero size

-r “name” name is readable

-w “name” name is writable

-x “name” name is executable

-z “name” name exists and has zero size

… and more

Perl for Biologists 1.2 42

Functions operating on files and directories

Session 6: Files, directories and I/O operations

mkdir(“name”) create directory name

rmdir(“name”) delete directory name

chdir(“name”) change current SCRIPT directory to name

unlink(“name”) delete file name

rename(“name”) rename file or directory name

… and more

Perl for Biologists 1.2 43

Functions operating on files and directories

Session 6: Files, directories and I/O operations

Many Perl files and directories functions do the same as system functions:

chdir(“name”); � system(“cd name”); NOT THE SAME

mkdir(“name”);� system(“mkdir name”) OK, but system dependent

unlink(“name”);� system(“rm name”) OK, but system dependent

The most important difference between the functions and system calls is that

the system calls will only work on one system (e.g. Linux if using “rm name”, on

Windows it should be “del name”), while the functions will work on ANY system

changes current

directory of Perl

script

changes current directory of system

command shell, Perl script current

directory is NOT affected

Perl for Biologists 1.2 44Session 6: Files, directories and I/O operations

script4a.pl
#!/usr/local/bin/perl

$pwd = `pwd`;

print "1. Our curent directory is: $pwd";

mkdir("tmpdir");

if(!-e "tmpdir")

{

print "ERROR!\n";

exit;

}

else

{

print "mkdir worked!\n";

}

chdir("tmpdir");

print "2. Our curent directory is: ";

system("pwd");

print "----\n";

system("cd /tmp; pwd ");

print "----\n";

print "3. Our curent directory is: ";

system("pwd");

chdir("/tmp");

print "4. Our curent directory is: ";

system("pwd");

Perl for Biologists 1.2 45

Opening and reading a directory

Session 6: Files, directories and I/O operations

Perl can open a directory and retrieve all its entries:

opendir DIRHANDLE, "/path/dirname";

Similar as to file open, opendir returns success or failure

code

@ent = readdir(DIRHANDLE);

returns an array containing all entries in a directory – i.e.

names of all files and directories it contains (including ‘.’ and

‘..’).

closedir DIRHANDLE;

Perl for Biologists 1.2 46Session 6: Files, directories and I/O operations

script5.pl #!/usr/local/bin/perl

opendir DIR, "/home/jarekp";

foreach $entry (readdir DIR)

{

$fullentry = "/home/jarekp/$entry";

if(-d $fullentry)

{

print "directory $entry\n";

}

elsif(-x $fullentry)

{

print "executable $entry\n";

}

elsif(-f $fullentry)

{

print "file $entry\n";

}

else

{

print "other entry $entry\n";

}

}

Perl for Biologists 1.2 47

1. Directory /home/jarekp/perl_06/files contains a set of fastq files with short

reads. Write a script that lists all the files in this directory.

2. Modify the script from exercise 1 to open each file, read it, and produce a hash

containing the distribution of sequence lengths in ALL files. Print the

distribution out in descending order to a file. Plot it in Excel (no binning).

Hint 1: Fastq file contains 4 lines for each sequence: header (starting with @),

sequence itself, ‘+’ line, and quality score line. Check script4.pl – there we had

two lines per sequence.

Hint 2: Create a hash where sequence lengths are the keys and values are

frequencies of the lengths.

3. Modify the script from exercise 2 to produce fasta file containing ALL the

sequences from ALL fastq files.

Hint: Open fasta file at the beginning, then write each header (replacing first @

with >) followed by sequence.

Exercises

Session 6: Files, directories and I/O operations

