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Reminder: What is a Hash?

Index

Array Hash
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Reminder: Hash Syntax

• Declaring a variable to be a Hash, use “%”

%hash;

• Can initialize a hash using an Array

%hash = ('red fruit', 'apple', 

'yellow fruit', 'banana', 'nine 

squared', 81);
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Reminder: Hash Syntax

• Accessing individual Hash element

$hash{'red fruit'};

• Equivalently

$key = 'red fruit';

$hash{$key};
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Reminder: Hash Syntax

• Assigning individual Hash element

$hash{'purple veggie'} = 

'eggplant';

• Can initialize a array using a Hash

@array = %hash;
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Reminder: The Big Arrow

%hash = (

'red fruit' => 'apple',

'yellow fruit' => 'banana',

'red berry' => 'cranberry',

'white tuber' => 'daikon',

'purple veggie' => 'eggplant',

'nine squared' => 81,

);
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Reminder: Hash Functions

• keys(%hash): returns an Array of the Keys

@hash_keys = keys (%hash);

@hash_keys = keys %hash;

• values(%hash): returns an Array of the Values

@hash_values = values (%hash);

@hash_values = values %hash;
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Reminder: Hash Functions

• each(%hash): returns the next Key Value pair 

as a 2 element array

@pair = each (%hash);

print "$pair[0] = $pair[1]\n";

while (@pair = each (%hash))

{

print "$pair[0] = $pair[1]\n";

}
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Session 5 Exercises Review

1. Modify the code from session 3 exercise 3 to generate a 9kb long random 

DNA sequence. Save this sequence to a variable.

2. Create a hash where the keys are unique sequences of 3 base pairs and the 

values are the counts of how often the key appeared in the randomly 

generated sequence. Print out/save to a file these keys and values

Bonus: Print out/save keys and values sorted by values in decreasing order

/home/jarekp/perl_05/exercise1.pl

Person with the most number (at least 3) of distinct methods of populating a hash 

from a string wins 50 FREE CBSU computing hours!

/home/jarekp/perl_05/exercise2.pl

/home/jarekp/perl_05/exercise3.pl

/home/jarekp/perl_05/exercise4.pl

/home/jarekp/perl_05/exercise5.pl
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Each program has three default input/output objects 

associated with it

• input stream – usually keyboard input:    STDIN

• output stream – usually screen: STDOUT

• error stream – usually screen: STDERR

Simple Line Input
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#!/usr/local/bin/perl

$svar = <STDIN>; #get one line of std input

print STDOUT "1. [$svar]\n";

chomp($svar);

print STDERR "2. [$svar]\n";

print "3. [$svar]\n";
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You can open file and create a stream with open function

open HANDLE, "/path/filename";

the above opens the file for reading (default)

Opening files as streams
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name of the stream,

also called filehandle

or iohandle or handle

file name: relative or 

absolute
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You can open file for writing:

open HANDLE, ">/path/filename";

The file will be created if it doesn't exist. If it does exist it will 

be overwritten. 

Opening file for append requires ‘>>’

open HANDLE, ">>/path/filename";

Opening files as streams
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Function open returns value indicating success or failure 

$res = open HANDLE, ">/path/filename";
if($res)

{

print "open successful\n";

}

or

if(!open HANDLE, ">/path/filename")

{

print "open failed\n";

}
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If there is an error special variable $! is set to an error text 

message generated by the system (like “access denied”)

if(!open HANDLE, ">/path/filename")

{

print "open failed\nError is: $!";

}
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There is a short version of if, especially useful in one-line statements:

open HANDLE, ">filename" or die "Open failed\nError is: $!";
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if substitute: execute whatever is past 

‘or’ if previous statement returned 

false

print the message into STDERR and 

terminate the program
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There is a short version of if, especially useful in one-line statements:

open HANDLE, ">filename" or print "Open failed\nError: $!";
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if substitute: execute whatever is past 

‘or’ if previous statement returned 

false

print the message into STDOUT
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Once opened, the file can be read the same way as  <STDIN>

$svar=<in>;

the file should be closed with close when not needed – it will flush 

the buffers 

close(out);
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script1.pl  (1)

Script to read file1 and copy the content to file2

File names read from arguments of the script

Every other new line replaced with a space
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script1.pl  (1)

#!/usr/local/bin/perl

#we want 2 file names as parameters

if($#ARGV != 1)

{

print STDERR "USAGE: script1.pl file_name1 file_name2\n";

exit;

}

#now try to open files

open in, $ARGV[0] or die "ERROR1: $!\n";

open out, ">" . $ARGV[1] or die "ERROR2: $!\n";
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script1.pl  (2)

#lets read file 1 and write file 2 in a loop

#lets replace line endings with space on every other line

#when writing to file 2

$n=1;

while($txt=<in>)

{

chomp $txt; #remove ending \n character

print "line $n length is " . length($txt) . "\n";

print out "$txt";

if($n % 2 == 0)

{

print out "\n";

}

else

{

print out " ";

}

$n++;

}

#close files

close(in);

close(out);
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What happens when we forget to open the file?

If reading, we will always get an empty string.

If writing, the data is ignored (goes to /dev/null).
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What happens when we forget to close the file?

The file will be closed automatically when program exits, or when 

the handle is reused (opened again).

However, if the program crashes, the data being written to a file 

may be lost.

The data is written to a buffer first, then transferred to the disk 

later.  This procedure speeds up read/write a lot, but if interrupted 

data may be lost.

Session 6: Files, directories and I/O operations 
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Perl script

print HANDLE

RAM temporary 

storage area

(BUFFER)

Permanent storage

(HARD DRIVE)

FAST: immediate write

SLOW: delayed write, usually when 

buffer full, or after timeout
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Very little 

memory used by 

processes

.. yet the memory is almost 

full – here are the buffers
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Buffering is a feature of both system and Perl interpreter, and it can 

be controlled by setting special variable $| 

$| = 1; #don’t buffer current stream 

$| = 0; #do buffer current stream

A stream is made current by using select() function

$prev = select(out);  

A stream handle can be kept in a variable instead of bareword

open $handle, "filename";
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Script printing random numbers to a file

File name is the argument

User decides to buffer the output or not

script2.pl  (1)
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#!/usr/local/bin/perl

if($#ARGV < 0)

{

print STDERR "USAGE: script2.pl file_name\n";

exit;

}

print "Do you want to flush? (y/n) ";

while($fl=<STDIN>)

{

chomp $fl;

if($fl ne "y" && $fl ne "n")

{

print "error: invalid input $fl\n";

print "Do you want to flush? (y/n) ";

}

else

{

last;

}

}

script2.pl  (1)
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open out, ">" . $ARGV[0] or die "ERROR: $!\n";

if($fl eq "y")

{

$prev = select(out);  #choose which stream buffer we will modify

$| = 1; #switch buffering off in selected stream

select($prev); #switch back to previously selected stream

}

$n=0;

while($n<1000_000_000)

{

$n++;

if($n % 1000 == 0)

{printf out "%010d %17.16f\n", $n, sqrt(rand(100));}

}

close(out);

script2.pl  (2)
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Binary files
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By default, any stream opened is treated as ASCII (text) stream.

Reading a file in ASCII (text) mode means some binary characters 

may be lost (converted) and in general the written binary file 

becomes corrupted.

See what happens when script1.pl is used for 

~jarekp/perl_06/picture.jpg  (you can view picture with eog).

File handle must be marked as binary in order to stop character 

conversion.
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Binary files
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open HANDLE1, "/path/filename1";
binmode(HANDLE1);

$count = read(HANDLE1, $data , $size);

open HANDLE2, ">/path/filename2";

binmode(HANDLE2);
print HANDLE2 $data;

how many bytes have 

been read

binary data from file is 

stored in a variable

how many bytes to 

read
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script3.pl 

Script copying binary file 

Source file is argument 1, destination file argument 2

Print number of bytes copied 
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script3.pl 

#!/usr/local/bin/perl

#we want 2 file names as parameters

if($#ARGV != 1)

{

print STDERR "USAGE: script3.pl file_name1 file_name2\n";

exit;

}

open in, $ARGV[0] or die "ERROR1: $!\n";

binmode(in);

open out, ">" . $ARGV[1] or die "ERROR2: $!\n";

binmode(out);

#lets read file 1 and write file 2 in a loop

$n=0;

while($cnt=read(in, $data, 1024))

{

$n += $cnt;

print "$n bytes total read so far, $cnt this iteration\n";

print out $data or die "Error writing file\n$!";

}

print "$n bytes copied\n";

#close files

close(in);

close(out);
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Opening pipelines
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Perl can open output stream of a program and read it as a file.

open HANDLE, "program1 |";

The file handle will reach the end when program1 ends.

open HANDLE, "program1 | program2 |";

output from program1 goes 

as input to program2 output from program2 goes 

to our file handle

output from program1 goes 

to our file handle
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Executing a program inside Perl
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Perl can execute any program from inside a script:

system("program1 arg1 arg2");

system("program1 arg1 arg2 1> out");

system("program1 arg1 arg2 1> out 2> err");

Perl script will WAIT until program1 finishes

STDOUT from program1 will go to script’s STDOUT

STDERR will go to script’s STDERR 

STDOUT from program1 will go to file out

STDERR will go to script’s STDERR 

STDOUT from program1 will go to file out

STDERR will go to file err
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Executing a program inside Perl
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system("program1 arg1 arg2 1> out 2> err &");

now Perl WILL NOT WAIT for program1 to finish, will continue 

immediately and program1 will run in parallel. 
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Executing a program inside Perl
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$n = system("program1 arg1 arg2");

system() returns an integer representing completion code of 

the program

usually 0 for success and something else for error.
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Executing a program inside Perl
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system("program1 arg1 arg2");

can be also written using back quotes, in this case the return is the 

OUTPUT of the command

$str = `program1 arg1 arg2`
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script4.pl 
Script to find the number of sequences and 

number of amino acids in swissprot BLAST database
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script4.pl 
#!/usr/local/bin/perl

open in, "fastacmd -d /shared_data/genome_db/BLAST_NCBI/swissprot

-p T -D 1 |" or die "ERROR: $!\n";

$n=0;

$aa=0;

$|=1;

while($txt=<in>)

{

if(substr($txt, 0, 1) eq ">")

{

$n++;

if($n % 1000 == 0){print ".";}

if($n % 80_000 == 0){print "\n";}

}

else

{

$aa += length($txt) - 1;

}

}

if($n % 80_000 != 0){print "\n";}

close(in);

print "swissprot contains $n sequences and $aa aa\n";
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Logical operators for files and directories
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-e “name” file or directory exists

-f  “name” name is a file

-d  “name” name is a directory

-s  “name” name is non-zero size

-r  “name” name is readable

-w  “name” name is writable

-x “name” name is executable

-z  “name” name exists and has zero size

… and more
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Functions operating on files and directories
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mkdir(“name”) create directory name

rmdir(“name”) delete directory name

chdir(“name”) change current SCRIPT directory to name

unlink(“name”) delete file name

rename(“name”) rename file or directory name

… and more
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Functions operating on files and directories
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Many Perl files and directories functions do the same as system functions:

chdir(“name”); � system(“cd name”);         NOT THE SAME

mkdir(“name”);� system(“mkdir name”) OK, but system dependent

unlink(“name”);� system(“rm name”) OK, but system dependent

The most important difference between the functions and system calls is that 

the system calls will only work on one system (e.g. Linux if using “rm name”, on 

Windows it should be “del name”), while the functions will work on ANY system

changes current 

directory of Perl 

script

changes current directory of system 

command shell, Perl script current 

directory is NOT affected
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script4a.pl 
#!/usr/local/bin/perl

$pwd = `pwd`;

print "1. Our curent directory is: $pwd";

mkdir("tmpdir");

if(!-e "tmpdir")

{

print "ERROR!\n";

exit;

}

else

{

print "mkdir worked!\n";

}

chdir("tmpdir");

print "2. Our curent directory is: ";

system("pwd");

print "----\n";

system("cd /tmp; pwd ");

print "----\n";

print "3. Our curent directory is: ";

system("pwd");

chdir("/tmp");

print "4. Our curent directory is: ";

system("pwd");
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Opening and reading a directory
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Perl can open a directory and retrieve all its entries:

opendir DIRHANDLE, "/path/dirname";

Similar as to file open, opendir returns success or failure 

code

@ent = readdir(DIRHANDLE);

returns an array containing all entries in a directory – i.e. 

names of all files and directories it contains (including ‘.’ and 

‘..’).

closedir DIRHANDLE;
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script5.pl #!/usr/local/bin/perl

opendir DIR, "/home/jarekp";

foreach $entry (readdir DIR)

{

$fullentry = "/home/jarekp/$entry";

if(-d $fullentry)

{

print "directory $entry\n";

}

elsif(-x $fullentry)

{

print "executable $entry\n";

}

elsif(-f $fullentry)

{

print "file $entry\n";

}

else

{

print "other entry $entry\n";

}

}
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1. Directory /home/jarekp/perl_06/files  contains a set of fastq files with short 

reads. Write a script that lists all the files in this directory.

2. Modify the script from exercise 1 to open each file, read it, and produce a hash 

containing the distribution of sequence lengths in ALL files. Print the 

distribution out in descending order to a file. Plot it in Excel (no binning).

Hint 1: Fastq file contains 4 lines for each sequence: header (starting with @), 

sequence itself, ‘+’ line, and quality score line.  Check script4.pl – there we had 

two lines per sequence.

Hint 2: Create a hash where sequence lengths are the keys and values are 

frequencies of the lengths.

3. Modify the script from exercise 2 to produce fasta file containing ALL the 

sequences from ALL fastq files.

Hint: Open fasta file at the beginning, then write each header (replacing first @ 

with >) followed by sequence.

Exercises
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