
Perl for Biologists

Session 7
April 15, 2015

Regular Expressions

Jon Zhang

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 1

Review of Session 6

Each program has three default input/output

objects associated with it

• Input steam – usually keyboard input: STDIN

• Output stream – usually to screen: STDOUT

• Error stream - usually screen: STDERR

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 2

Review of Session 6

• Opening files for reading

open HANDLE, "/path/filename";

• Open function returns operation success
$res = open HANDLE, ">/path/filename";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 3

Review of Session 6

• Opening files for writing

open HANDLE, ">/path/filename";

• Opening files for appending

open HANDLE, ">>/path/filename";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 4

Review of Session 6

• Opened files can be read the same way as
<STDIN>

$svar=<in>;

• Opened files should be closed when not
needed

close(out);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 5

Review of Session 6

• Die keyword prints to STDERR
open HANDLE, ">filename" or die

"Open failed\nError is: $!";

• Print keyword prints to STDOUT
open HANDLE, ">filename" or print

"Open failed\nError: $!";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 6

Review of Session 6

• Buffering feature using the $| special variable
$| = 1; #don’t buffer current stream

$| = 0; #do buffer current stream

• The concept of making a stream current
$prev = select(out);

• Using a variable for a stream handle
open $handle, "filename";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 7

Review of Session 6

• Reading from a binary file
open HANDLE1, "/path/filename1";

binmode(HANDLE1);

$count = read(HANDLE1, $data , $size);

how many bytes have
been read

binary data from file is
stored in a variable

how many bytes to
read

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 8

Review of Session 6

• Reading the output stream of a program
open HANDLE, "program1 |";

• Creating a pipeline using multiple programs
open HANDLE, "program1 | program2 |";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 9

Review of Session 6

• Calling any program from perl
system("program1 arg1 arg2");

• Likewise, saving output
system("program1 arg1 arg2 1> out 2> err");

• Perl can run in parallel as program runs
system("program1 arg1 arg2 1> out 2> err &");

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 10

Review of Session 6

• Opening directories

opendir DIRHANDLE, "/path/dirname";

• Reading the contents of a directory
@ent = readdir(DIRHANDLE);

• Closing directory

closedir DIRHANDLE;

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 11

Review of Session 6

• -e “name”: file or directory exists

• -f “name”: name is a file

• -d “name”: name is a directory

• -s “name”: name is non-zero size

• -r “name”: name is readable

• -w “name”: name is writable

• -x “name”: name is executable

• -z “name”: name exists and has zero size

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 12

Review of Session 6

• mkdir(“name”): create directory name

• rmdir(“name”): delete directory name

• chdir(“name”): change current SCRIPT
directory to name

• unlink(“name”): delete file name

• rename(“name”): rename file or directory
name

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 13

Exercise Review

• Directory /home/jarekp/perl_06/files
contains a set of fastq files with short reads.
Write a script that lists all the files in this
directory.

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 14

Exercise Review

opendir DIR, "/home/jarekp/perl_06/files";

foreach $entry (readdir DIR)

{

 $fullentry = "/home/jarekp/perl_06/files/$entry";

 if($entry ne "." && $entry ne "..")

 {

 print "$fullentry\n";

 }

}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 15

Exercise Review

• Modify the script from exercise 1 to open each
file, read it, and produce a hash containing the
distribution of sequence lengths in ALL files.
Print the distribution out in descending order
to a file. Plot it in Excel (no binning).

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 16

Exercise Review

if($entry ne "." && $entry ne "..")

{

 print "$fullentry\n";

 open in, $fullentry;

 while($head=<in>) #while reads the header (line 1)

 {

 $seq = <in>; #read in sequence (line 2)

 $txt2 = <in>; #read in '+' line (line 3)

 $txt3 = <in>; #read in quality score(line 4)

 $len = length($seq) - 1; #(minus one for \n)

 $seq_count{$len}++;

 }

 close(in);

}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 17

Exercise Review

@sorted_keys = sort {$b <=> $a} keys %seq_count;

foreach $key (@sorted_keys)

{

 print "$key $seq_count{$key}\n";

}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 18

Exercise Review

• Modify the script from exercise 2 to produce
fasta file containing ALL the sequences from
ALL fastq files.

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 19

Exercise Review

opendir DIR, "/home/jarekp/perl_06/files";

open out, ">sequences.fasta";

foreach $entry (readdir DIR)

{

 $fullentry = "/home/jarekp/perl_06/files/$entry";

 if($entry ne "." && $entry ne "..")

 {

 ……

 }

}

close(out);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 20

Exercise Review

if($entry ne "." && $entry ne "..")

{

 print "$fullentry\n";

 open in, $fullentry;

 while($head=<in>) #while reads the header (line 1)

 {

 $seq = <in>; #read in sequence (line 2)

 $txt2 = <in>; #read in '+' line (line 3)

 $txt3 = <in>; #read in quality score line (line 4)

 print out ">$head"; #no need for \n

 print out $seq; #no need for \n

 }

 close(in);

}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 21

What is a Regular Expression?

• Regex

• A specific pattern that is used to match strings
of text

• Not unique to Perl

• Provides flexibility and precision in matches

• VERY applicable to bioinformatics

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 22

What is a Regular Expression?

• We have looked at a pattern before:
$string = "Hello World!";

@string_array = split / /, $string;

• Using simple patterns: /pattern/ and $_
$_ = "Hello World!";

if (/Hello/)

{

 print "$_ contains the word Hello!\n";

}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 23

What is a Regular Expression?

• Variables can also be used between the //
$match = "Hello";

$_ = "Hello World!";

if (/$match/)

{

 print "$_ contains the word Hello!\n";

}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 24

Binding Operators

• The binding operator: =~
$string = "Hello World!";

if ($string =~ /Hello/)

• The other binding operator: !~

if ($string !~ /Bye/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 25

Metacharacters

• Any character that does not represent itself

• /./: matches all but newline

if ($string =~ /Hel.o/)

• /a|b/: matches a OR b

if ($string =~ /Heli|lo/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 26

Quantifiers

• Represents repeated instances of the
preceding character
$string = "Hellooooo Woooorrrld!";

• /a*/: zero or more

if ($string =~ /Hel*i*o*/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 27

Quantifiers

• /a+/: one or more

if ($string =~ /Hel+o+o/)

• /a?/: zero or one (i.e. optional)

if ($string =~ /He?a?l?lo/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 28

General Quantifiers

• /a{m}/: exactly m repetitions
if ($string =~ /Hel{2}o{5}/)

• /a{m,}/: at least m repetitions
if ($string =~ /Hel{1,}o{3,}o/)

• /a{m,n}/: at least m, at most n repetitions

if ($string =~ /Hel{1,5}o{1,10}/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 29

Character Classes

• Using [] to represent a set of characters
$string = "Hello World!";

• /[aeiouy]/: lowercase vowels
if ($string =~ /H[aeiouy]ll[aeiouy]/)

• /[012345]/: first five numbers, same as /[0-5]/
$string = "Hell0 World!";

if ($string =~ /Hell[0-5]/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 30

Character Classes

• Negated Character Class using the caret ^
$string = "Hello World!";

• /[^aeiouy]/: anything except lowercase vowel
if ($string =~ /He[^aeiouy]+o/)

• /[^0-5]/: anything except first five numbers

if ($string =~ /Hell[^0-5]/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 31

Character Class Shortcuts

• /\d/: Digit, /[0-9]/

• /\D/: Nondigit, /[^0-9]/

• /\s/: Whitespace, /[\t\n\r\f]/

• /\S/: Nonwhitespace, /[^ \t\n\r\f]/

• /\w/: Word character, /[a-zA-Z0-9_]/

• /\W/: Nonword character, /[^a-zA-Z0-9_]/

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 32

Grouping

• Using () to group many characters together as
one unit
$string = "mississippi";

• /(iss){2}/: looks for two repetitions of “iss” not
just “s”

if ($string =~ /\w([aeiouy]s+){2}/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 33

Grouping

• Grouping saves the content in the () for future
use in the regex using \1, \2, \3…
$string = "mississippi";

• /(\w)\1/: matches two of the same word
characters repeated
if ($string =~ /\w([aeiouy]s+)\1/)

• Not the same as /(\w){2}/!

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 34

Grouping

• Grouping saves the content in the () for future
use outside of the regex using $1, $2, $3…
$string = "Hello World!";

• /(\w+)\s(\w+)/: matches first word and second
if ($string =~ /(\w+)\s(\w+)/)

{

 print "The first word is $1, the second word is $2\n";

}

• Capture variables last until next SUCCESSFUL
match

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 35

Anchors

• Anchors force the pattern to start matching at
certain point in the string
$string = "Hello World!";

• /\A\w+/ or /^\w+/: force matching from start
of string
if ($string =~ /\AWorld/)

• /\w+\z/ or /\w+\Z/ or /w+$/: force matching
from the end of the string
if ($string =~ /Hello\z/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 36

Matching

• /pattern/ is a shortcut for m/pattern/

• With the ‘m’ you do not have to use ‘/’s
$string = "http://cbsu.tc.cornell.edu";

if ($string =~ /\Ahttp:\/\//)

• Pick encapsulating characters that do not
appear in your pattern
if ($string =~ m*\Ahttp://*)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 37

http://cbsu.tc.cornell.edu/
http:///

Match Modifiers

• /lO wORl/i: case insensitive match
$string = "Hello World!";

if ($string =~ /lO wORl/i)

• /(\w+)/g: global match, matches all non-
overlapping instances

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 38

Match Modifiers

• Using global match and capture groups to
populate an array
$string = "Jon Zhang Jarek Pillardy Robert Bukowski";

@array = ($string =~ /(\w+)/g);

• Using global match and capture groups to
populate a hash

%hash = ($string =~ /(\w+)/g);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 39

Match Modifiers

• /(\w+)\s(\w+)/x: enable adding arbitrary
whitespace, very handy for readability

$string = "mississippi";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 40

Match Modifiers

if ($string =~ /

 \w # first letter

 (# begin group

 [aeiouy] # any vowel

 s+ # one or more s

) # end group

 {2} # group appears twice

 /x

)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 41

Substitutions

$string = "Hello World!";

• s/\w+/replacement/: perl’s find and replace
function
$string =~ s/\w+/substitution/;

• s/\w+/replaced/g: substitutes all matches
$string =~ s/\w+/substitution/g;

• The return value of s/// is the number of matches
$matches = ($string =~ s/\w+/sub/g);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 42

Substitutions

$string = "Hello World!";

• s/(\w+)/$1$1/g: using capture groups

$string =~ s/(\w+)/$1$1/g;

• $copy = $original =~ s/pattern/sub/r:
nondestructive substitutions
$original = "Hello World!";

$copy = ($original =~ s/world/Ithaca/ir);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 43

Regex Example

• Create a hash where the keys are unique
sequences of 3 base pairs and the values are
the counts of how often the key appeared in
the randomly generated sequence. Print
out/save to a file these keys and values

– Capture first three base pairs, increments its count

– Delete the first base pair and repeat the process
until there are less than 3 base pairs left

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 44

Regex Example

$sequence

while ($sequence =~ s/([acgt])([acgt])([acgt])/$2$3/i)

{

 $seq_count{$1 . $2 . $3}++;

}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 45

Exercises

1. Using our trusty random sequence generator,
create a 9000 base pair length of sequence.

2. Using regular expressions find every instance of
the sequence “ATGCAT” and delete it from the
sequence

3. At each deletion, save the three base pairs on
each side of the “ATGCAT” creating 2 arrays, one
storing preceeding and one storing the trailing 3
base pairs

4. Print out the two arrays

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 46

