Perl for Biologists

Session 7
April 15, 2015

Regular Expressions

Jon Zhang

Review of Session 6

Each program has three default input/output
objects associated with it

* Input steam — usually keyboard input: STDIN
* QOutput stream — usually to screen: STDOUT
* Error stream - usually screen: STDERR

Review of Session 6

* Opening files for reading
open HANDLE, "/path/filename";

* Open function returns operation success
Sres = open HANDLE, ">/path/filename";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

Review of Session 6

* Opening files for writing
open HANDLE, ">/path/filename";

* Opening files for appending
open HANDLE, ">>/path/filename";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

Review of Session 6

* Opened files can be read the same way as
<STDIN>

Ssvar=<in>;

* Opened files should be closed when not
needed

close (out) ;

Review of Session 6

* Die keyword prints to STDERR

open HANDLE, ">filename" or die
"Open failed\nError is: $!";

* Print keyword prints to STDOUT

open HANDLE, ">filename" or print
"Open failed\nError: $!";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

Review of Session 6

» Buffering feature using the S| special variable

S| = 1; #don’t buffer current stream
S| = 0; #do buffer current stream

* The concept of making a stream current
Sprev = select(out);

e Using a variable for a stream handle
open Shandle, "filename";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

Review of Session 6

* Reading from a binary file
open HANDLEl, "/path/filenamel";
binmode (HANDLEL) ;
Scount = read (HANDLE1l, S$data , S$Ssize);

s

how many bytes have binary data from file is how many bytes to
been read stored in a variable read

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 8

Review of Session 6

* Reading the output stream of a program
open HANDLE, "programl |[";

* Creating a pipeline using multiple programs
open HANDLE, "programl | programZ |";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

Review of Session 6

* Calling any program from perl

system ("programl argl arg2");

* Likewise, saving output

system ("programl argl arg2 1> out 2> err");

* Perl can run in parallel as program runs

system("programl argl argZ2 1> out 2> err &");

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

10

Review of Session 6

* Opening directories

opendir DIRHANDLE, "/path/dirname";

* Reading the contents of a directory
@ent = readdir (DIRHANDLE) ;

* Closing directory
closedir DIRHANDLE;

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

11

Review of Session 6

-e “name”: file or directory exists

-f “name”: name is a file

-d “name”: name is a directory

-s “name”: name is non-zero size

-r “name”: name is readable

-w “name”: name is writable

-X “name”: name is executable

-z “name”: name exists and has zero size

Review of Session 6

mkdir(“name”): create directory name
rmdir(“name”): delete directory name

chdir(“name”): change current SCRIPT
directory to name

unlink(“name”): delete file name

rename(“name”): rename file or directory
name

Exercise Review

* Directory /home/jarekp/perl 06/files
contains a set of fastq files with short reads.
Write a script that lists all the files in this

directory.

Exercise Review

opendir DIR, "/home/jarekp/perl 06/files";

foreach Sentry (readdir DIR)
{

$fullentry = "/home/jarekp/perl 06/files/Sentry";

if (Sentry ne "." && $entry ne "..")
{
print "$fullentry\n";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

15

Exercise Review

* Modify the script from exercise 1 to open each
file, read it, and produce a hash containing the
distribution of sequence lengths in ALL files.
Print the distribution out in descending order
to a file. Plot it in Excel (no binning).

Exercise Review

if (Sentry ne "." && Sentry ne "..")
{
print "Sfullentry\n";
open in, S$fullentry;
while (Shead=<in>) #while reads the header (line 1)
{
$seq = <in>; #read in sequence (line 2)
Stxt2 = <in>; #read in '+' line (line 3)
$txt3 = <in>; #read in quality score(line 4)
$len = length(Sseqg) - 1; #(minus one for \n)
$seq count{Slen}++;
}

close (in) ;

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

17

Exercise Review

@sorted keys = sort {$b <=> Sa} keys S%$seqg count;
foreach Skey (@sorted keys)

{
print "Skey $seg count{Skey}\n";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

18

Exercise Review

* Modify the script from exercise 2 to produce
fasta file containing ALL the sequences from
ALL fastq files.

Exercise Review

opendir DIR, "/home/jarekp/perl 06/files";
open out, ">sequences.fasta";

foreach Sentry (readdir DIR)

{

$fullentry = "/home/jarekp/perl 06/files/Sentry";

if (Sentry ne "." && $entry ne "..")

}

close (out) ;

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

20

Exercise Review

if (Sentry ne "." && Sentry ne "..")

{

print "S$fullentry\n";

open in, S$fullentry;

while (Shead=<in>)
{
$Sseq = <in>;
Stxt2 = <in>;
Stxt3 = <in>;

#fwhile reads the header

(line 1)

#read in sequence (line 2)

#fread in '+' line (line 3)

#read in quality score line (line 4)

print out ">Shead"; #no need for \n

print out $seq; #no need for \n

}

close (in) ;

}

Session 7: Regular Expressions

CBSU Perl for Biologists 1.2

21

What is a Regular Expression?

Regex

A specific pattern that is used to match strings
of text

Not unique to Perl
Provides flexibility and precision in matches
VERY applicable to bioinformatics

What is a Regular Expression?

 We have looked at a pattern before:
Sstring = "Hello World!";
@string array = split / /, S$string;

e Using simple patterns: /pattern/ and S
$ = "Hello World!";
if (/Hello/)
{

print "$ contains the word Hello!\n";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 23

What is a Regular Expression?

* Variables can also be used between the //

Smatch = "Hello";

$_ = "Hello World!";
if (/Smatch/)

{

print "$ contains the word Hello!\n";

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 24

Binding Operators

* The binding operator: =~
Sstring = "Hello World!";
if ($string =~ /Hello/)

 The other binding operator: |~
if ($Sstring !~ /Bye/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

25

Metacharacters

* Any character that does not represent itself

* /./: matches all but newline
if ($Sstring =~ /Hel.o/)

* /a|b/: matchesa OR b
if ($string =~ /Heli|lo/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

26

Quantifiers

* Represents repeated instances of the
preceding character

Sstring = "Hellooooo Woooorrrld!";

e /a*/: zero or more
if ($string =~ /Hel*i*o*/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

27

Quantifiers

e /a+/: one or more
if ($string =~ /Hel+o+o/)

* /a?/: zero or one (i.e. optional)
if ($string =~ /He?a?1?1lo/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

28

General Quantifiers

* /a{m}/: exactly m repetitions
if (Sstring =~ /Hel{2}0{5}/)

e /a{m,}/: at least m repetitions
if ($Sstring =~ /Hel{l,}o{3,}0o/)

e /a{m,n}/: at least m, at most n repetitions
if ($string =~ /Hel{1l,5}0{1,101}/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 29

Character Classes

e Using [] to represent a set of characters
Sstring = "Hello World!";

* /[aeiouy]/: lowercase vowels
if ($string =~ /H[aeiouy]ll[aeiouy]/)

e /[012345]/: first five numbers, same as /[0-5]/

$string = "HellO World!";
if (Sstring =~ /Hell[0-5]/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 30

Character Classes

* Negated Character Class using the caret A
Sstring = "Hello World!";

* /[Maeiouy]/: anything except lowercase vowel
if ($string =~ /He["aeiliouy]+o/)

» /[*0-5]/: anything except first five numbers
if ($string =~ /Hell["0-5]/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

31

Character Class Shortcuts

» /\d/: Digit, /[0-9]

/

* /AD/: Nondigit, /

10-9]/

* /\s/: Whitespace, /[\t\n\r\f]/

* /AS/: Nonwhitespace, /[\t\n\r\f]/

* A\w/: Word character, /[a-zA-Z0-9]/
 AW/: Nonword character, /[*a-zA-Z0-9]/

Grouping

e Using () to group many characters together as
one unit

Sstring = "mississippi";

o /(iss){2}/: looks for two repetitions of “iss” not

io_ 7

just “s
if ($string =~ /\w([aeiouy]s+) {2}/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

33

Grouping

* Grouping saves the content in the () for future
use in the regex using \1, \2, \3...

Sstring = "mississippi";

* /(\W)\1/: matches two of the same word
characters repeated

if ($string =~ /\w([aeilouy]s+)\1/)

* Not the same as /(\w){2}/!

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 34

Grouping

* Grouping saves the content in the () for future
use outside of the regex using $1, $2, S3...

Sstring = "Hello World!"™;

e /(\w+)\s(\w+)/: matches first word and second

if (Sstring =~ / (\w+)\s (\w+) /)
{

print "The first word is $1, the second word is $2\n";

}

e Capture variables last until next SUCCESSFUL
match

Anchors

e Anchors force the pattern to start matching at
certain point in the string

Sstring = "Hello World!";

 NA\w+/ or /M\w+/: force matching from start
of string
if (Sstring =~ /\AWorld/)

* A\w+\z/ or A\w+\Z/ or /w+S/: force matching
from the end of the string
if ($string =~ /Hello\z/)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

36

Matching

* /pattern/ is a shortcut for m/pattern/

* With the ‘m’ you do not have to use ‘/’s

Sstring = "http://cbsu.tc.cornell.edu";

if ($string =~ /\Ahttp:\/\//)

* Pick encapsulating characters that do not
appear in your pattern

if (Sstring =~ m*\Ahttp://%*)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

37

http://cbsu.tc.cornell.edu/
http:///

Match Modifiers

* /IO wORI/i: case insensitive match
Sstring = "Hello World!";
if (Sstring =~ /10 wOR1l/i)

* /(\w+)/g: global match, matches all non-
overlapping instances

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 38

Match Modifiers

* Using global match and capture groups to
populate an array

$string = "Jon Zhang Jarek Pillardy Robert Bukowski";

Qarray = ($string =~ /(\w+)/qg);

* Using global match and capture groups to
populate a hash
Shash = ($string =~ / (\w+)/qg);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

39

Match Modifiers

o /(\w+)\s(\w+)/x: enable adding arbitrary
whitespace, very handy for readability

Sstring = "mississippi";

Match Modifiers

if (Sstring =~ /

\W # first letter

(# begin group
[aeilouy] # any vowel

s+ # one or more s

) # end group

{2} # group appears twice

/x
)

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 41

Substitutions
Sstring = "Hello World!";

* s/\w+/replacement/: perl’s find and replace
function

Sstring =~ s/\w+/substitution/;

* s/\w+/replaced/g: substitutes all matches
Sstring =~ s/\w+/substitution/g;

 The return value of s/// is the number of matches
Smatches = ($string =~ s/\w+/sub/qg);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2 42

Substitutions

Sstring = "Hello World!";

* s/(\w+)/S1S1/g: using capture groups
Sstring =~ s/ (\w+)/S$1$1/g;

* Scopy = Soriginal =~ s/pattern/sub/r:
nondestructive substitutions
Soriginal = "Hello World!";

Scopy = (Soriginal =~ s/world/Ithaca/ir);

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

43

Regex Example

* Create a hash where the keys are unique
sequences of 3 base pairs and the values are
the counts of how often the key appeared in
the randomly generated sequence. Print
out/save to a file these keys and values

— Capture first three base pairs, increments its count

— Delete the first base pair and repeat the process
until there are less than 3 base pairs left

Regex Example

Ssequence
while (S$Ssequence =~ s/ ([acgt]) ([acgt]) ([acgt])/$2$3/1)
{
$seqg count{Sl . $2 . S$3}++;
}

Session 7: Regular Expressions CBSU Perl for Biologists 1.2

45

Exercises

. Using our trusty random sequence generator,
create a 9000 base pair length of sequence.

. Using regular expressions find every instance of
the sequence “ATGCAT” and delete it from the
sequence

. At each deletion, save the three base pairs on
each side of the “ATGCAT” creating 2 arrays, one
storing preceeding and one storing the trailing 3
base pairs

. Print out the two arrays

