
Perl for Biologists

Session 9
April 29, 2015

Subroutines and functions

Jaroslaw Pillardy

Session 9: Subroutines and functions Perl for Biologists 1.2 1

Perl for Biologists 1.2 2

Suggestions Welcomed!

There are three more sessions devoted to practical examples

They are intended to show all the techniques and semantics of

Perl in work on actual bioinformatics tasks

Do you have (or know about) any problems that you think

qualify as an example?

I will be happy to hear about it! Please send an e-mail to

jp88@cornell.edu – maybe your problem will be a part of one

of the three practical sessions.

Session 9: Subroutines and functions

Perl for Biologists 1.2 3

Session 8 Exercises Review

Modify the script extract_from_fasta.pl to select sequences which

• Are on the list of requested sequences OR

• Contain a given DNA motif

/home/jarekp/perl_08/exercise1_extract_from_fasta.pl

Modify the script filter_bam.pl to

• filter out all alignments with indels (use XO and XG tags)

• Accept SAM input from STDIN and write output to STDOUT, so that the filtering

command would be

samtools view –h maize_tst.bam | ./filter_bam.pl |

samtools view –Sb - > maize_filtered.bam

/home/jarekp/perl_08/exercise2_filter_bam.pl

Session 9: Subroutines and functions

Perl for Biologists 1.2 4Session 9: Subroutines and functions

Subroutine or function is:

• named block of code

• can be called with parameters from anywhere in the

program

• returns a value

Subroutines and functions

Perl for Biologists 1.2 5Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a given directory

$ext = "pl";

$dir = "/home/jarekp";

$n = 0;

$m = 0;

opendir DIR, $dir;

foreach $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

closedir(DIR);

$fperc = 100*$m/$n;

print "There were $fperc\% of .$ext files in directory $dir\n";

script1.pl

Perl for Biologists 1.2 6Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a given directory

$ext = "pl";

$dir = "/home/jarekp";

{

$n = 0;

$m = 0;

opendir DIR, $dir;

foreach $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

closedir(DIR);

$fperc = 100*$m/$n;

}

print "There were $fperc%% of .$ext files in directory $dir\n";

Perl for Biologists 1.2 7Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a given directory

$ext = "pl";

$dir = "/home/jarekp";

&listfiles;

print "There were $fperc%% of .$ext files in directory $dir\n";

sub listfiles

{

$n = 0;

$m = 0;

opendir DIR, $dir;

foreach $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

closedir(DIR);

$fperc = 100*$m/$n;

}

script1a.pl

Perl for Biologists 1.2 8Session 9: Subroutines and functions

Subroutine can be declared in Perl script as a named block of

code:

sub sub_name
{

code;

}

There is no difference between subroutine and function:

declaration is the same and it ALWAYS returns a value (not

always a useful one …)

Subroutines and functions

Perl for Biologists 1.2 9Session 9: Subroutines and functions

Subroutine can be called or referenced in two ways

By name as an object

&sub_name;

By name as a subroutine

sub_name();

Subroutines and functions

Perl for Biologists 1.2 10Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a given directory

$ext = "pl";

$dir = "/home/jarekp";

$ret = listfiles();

print "There were $fperc%% of .$ext files in directory $dir\n";

print "Return value is $ret\n";

sub listfiles

{

$n = 0;

$m = 0;

opendir DIR, $dir;

foreach $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

closedir(DIR);

$fperc = 100*$m/$n;

}

script1b.pl

Perl for Biologists 1.2 11Session 9: Subroutines and functions

Subroutine ALWAYS return a value!

Implicit

Result of the last operation in the sub block.

Explicit

return $var;

NOTE: return statement TERMINATES the execution of the

subroutine and returns to the main code immediately!

Subroutines and functions

Perl for Biologists 1.2 12Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a given directory

$ext = "pl";

$dir = "/home/jarekp";

$ret = listfiles();

print "There were $fperc%% of .$ext files in directory $dir\n";

print "Return value is $ret\n";

sub listfiles

{

$n = 0;

$m = 0;

opendir DIR, $dir;

foreach $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

$fperc = 100*$m/$n;

closedir(DIR);

}

script1c.pl

returns value of this

function

Perl for Biologists 1.2 13Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a given directory

$ext = "pl";

$dir = "/home/jarekp";

$ret = listfiles();

print "There were $fperc%% of .$ext files in directory $dir\n";

print "Return value is $ret\n";

sub listfiles

{

$n = 0;

$m = 0;

opendir DIR, $dir;

foreach $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

$fperc = 100*$m/$n;

closedir(DIR);

return $fperc;

}

script1d.pl

Perl for Biologists 1.2 14Session 9: Subroutines and functions

• To reuse the code in various places of the program without

copying it over
copied code takes a lot of space and all the copies must be changed simultaneously if

modified

• To make program more readable and clear

• To reuse the code in various other programs (function

libraries and modules)

Why do we use subroutines?

Perl for Biologists 1.2 15Session 9: Subroutines and functions

By default all variables declared in Perl script are accessible

everywhere in the code, including subroutines.

By default Perl variables are global.

It is potentially very dangerous and typically leads to errors!

It also makes coding in Perl faster, especially for short projects.

Extensive use of global variables in long programs makes the

code much harder to analyze and understand …

Global and local variables: scope

Perl for Biologists 1.2 16Session 9: Subroutines and functions

script2.pl (1)

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a set of directories

$ext = "pl";

$base = "/home/jarekp";

@dirs = qw(perl_01 perl_02 perl_03 perl_04 perl_05);

for($n=0; $n<$#dirs; $n++)

{

$dir = $base . "/" . $dirs[$n];

print "$n Listing $dir\n";

$ret = listfiles();

print "There were $ret\% of .$ext files in directory dir\n";

print "\$n is now $n\n";

}

Perl for Biologists 1.2 17Session 9: Subroutines and functions

script2.pl (2)

sub listfiles

{

$n = 0;

$m = 0;

opendir DIR, $dir;

foreach $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

$fperc = 100*$m/$n;

closedir(DIR);

return $fperc;

}

Perl for Biologists 1.2 18Session 9: Subroutines and functions

script2.pl lists only the first of the directories in @dirs

global variable $n is modified both in the main program body

and in the subroutine listfiles

it is a mess!

Global and local variables: scope

Perl for Biologists 1.2 19Session 9: Subroutines and functions

Local variables, accessible only in a given code block can be

declared using “my” keyword:

my $variable;

Local variable can be declared in ANY code block, not only in a

subroutine.

Local variable declared in a code block is also declared in all

child code blocks inside this code block

Using local variables wherever possible is a VERY good

programming practice.

Global and local variables: scope

Perl for Biologists 1.2 20Session 9: Subroutines and functions

script2a.pl (2)

sub listfiles

{

my $n = 0;

my $m = 0;

opendir DIR, $dir;

foreach my $entry (readdir DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$m++;

}

}

my $fperc = 100*$m/$n;

closedir(DIR);

return $fperc;

}

Perl for Biologists 1.2 21Session 9: Subroutines and functions

If there is a local variable and global variable with the same

names, in the code block where it is declared only local one is

accessible, while global one is inaccessible and unchanged.

Global and local variables: scope

Perl for Biologists 1.2 22Session 9: Subroutines and functions

Communicating with a subroutine using global variables (like in

all previous scripts) is a bad idea!

With global variables:

• hard to analyze the code

• names of the variables must be always the same

• subroutine is not a separate code – global variables bind it

to the main code block

The proper way to communicate with a subroutine is to use

arguments.

Arguments

Perl for Biologists 1.2 23Session 9: Subroutines and functions

Subroutine’s arguments are a list following sub name:

$ret = listfiles($dir, $ext);

They can be accessed inside the subroutine as parts of the

DEFAULT ARRAY

my @arguments = @_;

my $arg1 = $_[0];

my $arg2 = $_[1];

Arguments

default array

first element of the

default array

second element of the

default array

Perl for Biologists 1.2 24Session 9: Subroutines and functions

script2b.pl (1)

#!/usr/local/bin/perl

#script to list and count files

#with a given extension in a set of directories

my $ext = "pl";

my $base = "/home/jarekp";

my @dirs = qw(perl_01 perl_02 perl_03 perl_04 perl_05);

for(my $n=0; $n<$#dirs; $n++)

{

my $dir = $base . "/" . $dirs[$n];

print "$n Listing $dir\n";

my $ret = listfiles($dir, $ext);

print "There were $ret\% of .$ext files in directory $dir\n";

}

Perl for Biologists 1.2 25Session 9: Subroutines and functions

script2b.pl (2)

sub listfiles

{

my ($dir, $ext) = @_;

my $n = 0;

my $m = 0;

opendir my $DIR, $dir;

foreach my $entry (readdir $DIR)

{

if($entry ne "." && $entry ne ".."){$n++};

if($entry =~ /\.pl$/)

{

print "$dir/$entry\n";

$m++;

}

}

my $fperc = 100*$m/$n;

closedir($DIR);

return $fperc;

}

arguments

directory handle stored now in a

local variable NOT a bareword

Perl for Biologists 1.2 26Session 9: Subroutines and functions

Arrays can be passed as arguments

$ret = sub_name($var1, $var2, @arr);

All the arguments are interpreted in list context

They can be accessed inside the subroutine as parts of @_

=> in this example first two elements of @_ array are $var1

and $var2 the rest is just array @arr :

my $subvar1 = shift @_;

my $subvar2 = shift @_;

my @subarr = @_;

Arguments

Perl for Biologists 1.2 27Session 9: Subroutines and functions

Hashes can be passed as arguments

$ret = sub_name($var1, $var2, %hash);

All the arguments are interpreted in list context

Hash is converted into an array (keys odd, values even)

They can be accessed inside the subroutine as parts of @_

=> in this example first two elements of @_ array are $var1

and $var2 the rest is hash %hash :

my $subvar1 = shift @_;

my $subvar2 = shift @_;

my %subhash = @_;

Arguments

array converted

back into hash

Perl for Biologists 1.2 28Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to sort first n elements

#of an array

#initialize the array to

#random integers between 1 and 100

my @arr;

for(my $i=0; $i<15; $i++)

{

$arr[$i] = 1 + int(rand(100));

}

print "Unsorted array:\n";

print_array(@arr);

my @sorted = sort_array(10, "desc", @arr);

print "Sorted array:\n";

print_array(@sorted);

sub print_array

{

my @arr = @_;

for(my $i=0; $i<=$#arr; $i++)

{

printf("%3d. %3d\n", $i+1, $arr[$i]);

}

}

script3.pl (1)

Perl for Biologists 1.2 29Session 9: Subroutines and functions

sub sort_array

{

#sorts an array in order specified in arg #2 ('desc', 'asc')

#sorts only arg #1 first elemnts

#array follows arg #1 and #2

my $limit = shift @_;

my $order = shift @_;

my @arr = @_;

for(my $i=0; $i<$limit-1; $i++)

{

my $extr = $i;

for(my $j=$i+1; $j<$limit; $j++)

{

if($order eq "asc")

{

if($arr[$j] < $arr[$extr]){$extr=$j;}

}

else

{

if($arr[$j] > $arr[$extr]){$extr=$j;}

}

}

my $tmp = $arr[$i];

$arr[$i] = $arr[$extr];

$arr[$extr] = $tmp;

}

return @arr;

}

script3.pl (2)

Perl for Biologists 1.2 30Session 9: Subroutines and functions

A subroutine can of course call other subroutines

A subroutine can also call itself and become recursive

Recursive subroutines are a very powerful tool, but they are

also very risky

They usually use a lot of more memory and can bring your

computer to a standstill.

They must be carefully controlled!

Example: write a program to list all files with a given extension

in a directory tree.

Perl for Biologists 1.2 31Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files with a given extension in a directory tree

if($#ARGV != 1)

{

print "USAGE: script3.pl directory extension\n";

exit;

}

my $base = $ARGV[0];

my $ext = $ARGV[1];

my ($n, $m, $nf, $nd) = listfiles($base, $ext);

print "----------------------\n";

print "There were $m of .$ext files out of total $n objects\n";

print "including $nf files total and $nd directories total\n";

print "in a directory tree starting from $base\n";

script4.pl (1)

32

sub listfiles

{

my ($dir, $ext) = @_;

my $ntot = 0, $n_ext = 0, $nfiles = 0, $ndirs = 0;

opendir my $DIR, $dir;

foreach my $entry (readdir $DIR)

{

if($entry eq "." || $entry eq ".."){next;}

$ntot++;

if(-f "$dir/$entry")

{

$nfiles++;

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$n_ext++;

}

}

if(-d "$dir/$entry")

{

$ndirs++;

my ($ntot1,$n_ext1,$nfiles1,$ndirs1)=listfiles("$dir/$entry",$ext);

$ntot += $ntot1;

$n_ext += $n_ext1;

$nfiles += $nfiles1;

$ndirs += $ndirs1;

}

}

closedir($DIR);

return ($ntot, $n_ext, $nfiles, $ndirs);

}

script4.pl (2)

Session 9: Subroutines and functions Perl for Biologists 1.2

Perl for Biologists 1.2 33Session 9: Subroutines and functions

There is a serious problem with the script4.pl …

It can potentially lead to an infinite recursion when

encountering circular file reference!

=> demo with /home/jarekp/testdir directory tree

Perl for Biologists 1.2 34Session 9: Subroutines and functions

In programming, there are two methods of passing variables to

subroutines:

BY VALUE

The subroutine receives a copy of the data, and any changes

made in a subroutine DO NOT affect original variables

BY REFERENCE

The subroutine receives exactly the same variables as listed in

the arguments, any changes made in a subroutine DO affect

original variables.

Arguments

Perl for Biologists 1.2 35Session 9: Subroutines and functions

Perl default method of passing arguments to the subroutine is

by reference.

However, most programmers use them in a way simulating

passing by value.

Arguments

Perl for Biologists 1.2 36Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to sort first n elemnts

#of an array

#initialize the array to

#random integers between 1 and 100

my @arr;

for(my $i=0; $i<15; $i++)

{

$arr[$i] = 1 + int(rand(100));

}

print "Unsorted array:\n";

print_array(@arr);

my @sorted = sort_array(10, "desc", @arr);

print "Sorted array:\n";

print_array(@sorted);

print "Original array after sorting:\n";

print_array(@arr);

sub print_array

{

my @arr = @_;

for(my $i=0; $i<=$#arr; $i++)

{

printf("%3d. %3d\n", $i+1, $arr[$i]);

}

}

script5.pl (1)

Perl for Biologists 1.2 37Session 9: Subroutines and functions

sub sort_array

{

#sorts an array in order specified in arg #2 ('desc', 'asc')

#sorts only arg #1 first elemnts

#array follows arg #1 and #2

my $limit = shift @_;

my $order = shift @_;

my @arr = @_;

for(my $i=0; $i<$limit-1; $i++)

{

my $extr = $i;

for(my $j=$i+1; $j<$limit; $j++)

{

if($order eq "asc")

{

if($arr[$j] < $arr[$extr]){$extr=$j;}

}

else

{

if($arr[$j] > $arr[$extr]){$extr=$j;}

}

}

my $tmp = $arr[$i];

$arr[$i] = $arr[$extr];

$arr[$extr] = $tmp;

}

return @arr;

}

script5.pl (2)

here programmer requests a

COPY of the parameter , all

further operations are done

on this copy

Perl for Biologists 1.2 38Session 9: Subroutines and functions

sub sort_array

{

#sorts an array in order specified in arg #2 ('desc', 'asc')

#sorts only arg #1 first elemnts

#array follows arg #1 and #2

my $limit = shift @_;

my $order = shift @_;

for(my $i=0; $i<$limit-1; $i++)

{

my $extr = $i;

for(my $j=$i+1; $j<$limit; $j++)

{

if($order eq "asc")

{

if($_[$j] < $_[$extr]){$extr=$j;}

}

else

{

if($_[$j] > $_[$extr]){$extr=$j;}

}

}

my $tmp = $_[$i];

$_[$i] = $_[$extr];

$_[$extr] = $tmp;

}

return @_;

}

script5a.pl (2)

ORIGINAL parameters (by

reference) are used

changes are made on the

ORIGINAL parameters

Perl for Biologists 1.2 39Session 9: Subroutines and functions

Variables passed to the subroutine are always passed in list

context, i.e. as if they were one long array.

It works if we want to pass a few scalar variables followed by

ONE array:

subroutine($var1, $var2, @arr);

We can recover variables in the subroutine if we know how

many scalars are in the front:

my ($var1, $var2, @arr) = @_;

Arguments

Perl for Biologists 1.2 40Session 9: Subroutines and functions

Variables passed to the subroutine are always passed in list

context, i.e. as if they were one long array.

It DOES NOT work if we want to pass more than one array,

several arrays, or mixed scalars, arrays and hashes:

subroutine(@arr1, $var1, @arr2);

We cannot recover variables in the subroutine, Perl sees one

long list, so in the example below ALL data will be assigned to

@arr1 while $var2 and @arr2 will stay empty

my (@arr1, $var2, @arr2) = @_;

Arguments

Perl for Biologists 1.2 41Session 9: Subroutines and functions

#!/usr/local/bin/perl

my @arr1 = (1, 2, 3, 4, 5, 6, 7);

my @arr2 = qw(a b c d e f g h);

my $var1 = "Test string";

my_test_sub(@arr1, $var1, @arr2);

sub print_arr

{

foreach my $entry (@_)

{

print "'$entry' ";

}

print "\n";

}

sub my_test_sub

{

my (@arr1, $var1, @arr2) = @_;

print "ARRAY 1: \n";

print_arr(@arr1);

print "Variable var1: '$var1'\n";

print "ARRAY 2: \n";

print_arr(@arr2);

}

script6.pl

Perl for Biologists 1.2 42Session 9: Subroutines and functions

It is possible to explicitly pass any variable by reference.

A variable is a named space of memory (RAM).

A reference is just a pointer to the address of this space.

The backslash operator produces a reference to any variable:

$var_ref = \$var;

References

variable containing the

reference (address) to

scalar $var

original variableref operator

Perl for Biologists 1.2 43Session 9: Subroutines and functions

$arr_ref = \@arr;

$hash_ref = \%hash;

References

variable containing the

reference (address) to

hash %hash

original variableref operator

variable containing the

reference (address) to

array @arr

original variableref operator

Perl for Biologists 1.2 44Session 9: Subroutines and functions

How to recover the original variable from its reference?

$var = ${$var_ref};
$var = $$var_ref;

@arr = @{$arr_ref};

@arr = @$arr_ref;

%hash = %{$hash_ref};

%hash = %$hash_ref;

References: de-referencing

Perl for Biologists 1.2 45Session 9: Subroutines and functions

We can pass more than one array, several arrays, or mixed

scalars, arrays and hashes with references :

subroutine(\@arr1, $var1, \@arr2);

In the subroutine we have now a list of three values, the first

and the last being references:

my ($arr1ref, $var2, $arr2ref) = @_;
@arr1 = @{$arr1ref};

@arr2 = @{$arr2ref};

Arguments

Perl for Biologists 1.2 46Session 9: Subroutines and functions

#!/usr/local/bin/perl

my @arr1 = (1, 2, 3, 4, 5, 6, 7);

my @arr2 = qw(a b c d e f g h);

my $var1 = "Test string";

my_test_sub(\@arr1, $var1, \@arr2);

sub print_arr

{

foreach my $entry (@_)

{

print "'$entry' ";

}

print "\n";

}

sub my_test_sub

{

my ($arr1ref, $var1, $arr2ref) = @_;

@arr1 = @{$arr1ref};

@arr2 = @{$arr2ref};

print "ARRAY 1: \n";

print_arr(@arr1);

print "Variable var1: '$var1'\n";

print "ARRAY 2: \n";

print_arr(@arr2);

}

script6a.pl

Perl for Biologists 1.2 47Session 9: Subroutines and functions

By default, all local (private) variables defined in a subroutine

with my keyword vanish when the subroutine returns, i.e.

their values are NOT preserved between the subroutine calls.

It is possible to declare persistent local subroutine variables

which values will be preserved between the calls:

state $n = 0;

The variable $n is still private (cannot be accessed outside of

the subroutine, same as if declared with my), but its value will

persist during program execution.

Local variables in subroutines

Perl for Biologists 1.2 48Session 9: Subroutines and functions

If an error occurs in a subroutine there should be a pre-defined

value returned indicating an error occurred.

If possible, a string with error description should be passed to

the calling code block.

Alternatively, an error can be printed to STDERR or STDOUT.

Usually it is best to leave handling of the errors to the calling

code block – sometimes you may want to ignore the error.

Error handling in subroutines

Perl for Biologists 1.2 49Session 9: Subroutines and functions

#!/usr/local/bin/perl

#script to list and count files with a given extension in a directory tree

if($#ARGV != 1)

{

print "USAGE: script3.pl directory extension\n";

exit;

}

my $base = $ARGV[0];

my $ext = $ARGV[1];

my ($n, $m, $nf, $nd, $counter) = listfiles($base, $ext);

if(! defined $n)

{

print "ERROR: $listfileserror\n$!\n";

exit;

}

print "----------------------\n";

print "There were $m of .$ext files out of total $n objects\n";

print "including $nf files total and $nd directories total\n";

print "in a directory tree starting from $base\n";

print "LISTFILES sub called $counter times\n";

script4a.pl (1)

50

sub listfiles

{

$listfileserror = "";

state $counter = 0;

my ($dir, $ext) = @_;

my $ntot = 0, $n_ext = 0, $nfiles = 0, $ndirs = 0 , $DIR;

$counter++;

if(!(opendir $DIR, $dir))

{

$listfileserror = "Cannot open directory $dir";

return (undef, undef, undef, undef);

}

script4a.pl (2)

if error occurs undef values

are returned and error

description passed via global

variable

persistent counter

incremented with each call

Session 9: Subroutines and functions Perl for Biologists 1.2

51

foreach my $entry (readdir $DIR)

{

if($entry eq "." || $entry eq ".."){next;}

$ntot++;

if(-f "$dir/$entry")

{

$nfiles++;

if($entry =~ /\.$ext$/)

{

print "$dir/$entry\n";

$n_ext++;

}

}

if(-d "$dir/$entry")

{

$ndirs++;

my ($ntot1,$n_ext1,$nfiles1,$ndirs1)=listfiles("$dir/$entry",$ext);

$ntot += $ntot1;

$n_ext += $n_ext1;

$nfiles += $nfiles1;

$ndirs += $ndirs1;

}

}

closedir($DIR);

return ($ntot, $n_ext, $nfiles, $ndirs, $counter);

}

script4a.pl (2)

counter must be returned

since it is local

returned counter ignored

on recursive calls

Session 9: Subroutines and

functions
Perl for Biologists 1.2

Perl for Biologists 1.2 52

1. Take a close look at script2b.pl. There are several potential problems with this

script, find them and modify the script to fix the problems.

2. Modify script4.pl to eliminate problem with symbolic links circular references.

3. Write a program computing factorial of an integer specified in its command

line. Use a recursive function to compute factorial, make sure it handles errors

(like invalid input) properly.

4. Write a program that computes total GC content of all sequences in a given

fasta file (file name should be given as an argument). Use subroutines to make

the code clean, understandable and reusable. Test the program on fasta file

from session 8 (/home/jarekp/perl_08/fasta_in.fa).

Exercises

Session 9: Subroutines and functions

