
Perl for Biologists 

Session 13
May 27, 2015

Parallelization with Perl

Jaroslaw Pillardy

Session 13: Parallelization with Perl Perl for Biologists 1.2 1



Perl for Biologists 1.2 2

Session 12 Exercises Review

1. Write a script that checks for new versions of a set of software titles listed in a 

file. Choose 5 programs from BioHPC Lab software list 

(http://cbsu.tc.cornell.edu//lab/labsoftware.aspx ) and implement them. Check 

for new versions on the original software websites, NOT BioHPC website.

HINT: You can use script4.pl as the starting point

HINT: You will need to put URL and tag delimiters info for each program in the 

input file. 

Software chosen:

BWA

Bioconductor

LUCY2

Picard

STRUCTURE

Session 13: Parallelization with Perl



Perl for Biologists 1.2 3

Session 12 Exercises Review

Configuration file (exercise1.config) is tab separated text file and hold necessary 

information for searching URLs for each program 

name<TAB>URL<TAB>tag1<TAB>offset1<TAB>tag2<TAB>offset2<TAB>last

name the name of the program

URL URL of the page with version info

tag1 string to find the beginning of version region

offset1 how many characters to skip from the beginning of tag1

tag2 string ending the version region

offset2 how many characters to skip (left or right) from tag2

last do we search for first (last=0) or last (last=1) occurrence

Session 13: Parallelization with Perl



Perl for Biologists 1.2 4Session 13: Parallelization with Perl

exercise1.pl (1)#!/usr/local/bin/perl

use LWP;

#what is our current version?

my %versions;

open in, "exercise1.data";

while(my $vtmp = <in>)

{

chomp $vtmp;

my ($progname, $pver) = split /\t/, $vtmp;

$versions{$progname} = $pver;

}

close(in);

my $message = "";

my $subject = "";

my $ua = LWP::UserAgent->new;

$ua->agent("MyApp/0.1 ");

open in, "exercise1.config";

while(my $entry = <in>)

{

if($entry =~ /^#/){next;}

print "checking $name\n";

chomp $entry;

my ($name, $url, $tag1, $off1, $tag2, $off2, $last) = split /\t/, $entry;

my $req = HTTP::Request->new(GET => $url);

$req->header(Accept => "text/html, */*;q=0.1");

my $res = $ua->request($req);



Perl for Biologists 1.2 5Session 13: Parallelization with Perl

exercise1.pl (2)
if ($res->is_success)

{

my $n = index($res->content,$tag1);

if($last == 1){$n=rindex($res->content, $tag1);}

if($n == -1)

{

$message .= "ERROR: Cannot find version string for $name\n";

print "ERROR: Cannot find version string for $name\n";

}

else

{

my $current = substr($res->content, $n+$off1);

$current = substr($current, 0, index($current, $tag2) - $off2);

if($current ne $versions{$name})

{

$message .= "New $name version found: $current\n";

print "New $name version found: $current\n";

$versions{$name} = $current;

}

}

}

else

{

$message .= "ERROR: Cannot open $name web page $url\n";

print "ERROR: Cannot open $name web page $url\n";

}

print "DONE\n";

}

close(in);



Perl for Biologists 1.2 6Session 13: Parallelization with Perl

exercise1.pl (3)

if($message ne "")

{

open out, ">exercise1.data";

foreach my $entry (keys %versions)

{

print out "$entry\t$versions{$entry}\n";

}

close(out);

$subject = "Automated version checker mail";

use Mail::Sendmail;

%mail = (To => 'jarekpp@yahoo.com',

From => 'jp86@cornell.edu',

subject => $subject,

Message => $message,

smtp=>'appsmtp.mail.cornell.edu');

sendmail(%mail);

}



Perl for Biologists 1.2 7

Every running program is executed as a process

Process is an object of UNIX (Linux) kernel (core of the system)

It is identified by process id (PID, an integer)

It has an allocated region in memory containing:

• code (binary instructions)

• execution queue(s) – set of pointers showing which 

instruction(s) to execute

• data (variables)

• copy of environment (variables, arguments etc.)

• communication handles (STDIN, STDOUT, file handles etc.)

• …

Running programs: processes

Session 13: Parallelization with Perl



Perl for Biologists 1.2 8

OS kernel assigns processes to available cores dynamically, i.e. 

one process may share a core with another process by 

executing instructions in turns.

The more cores available the more processes run concurrently.

Unused processes can be swept out from memory to disk 

(swap space), and loaded when needed.

One can run many more processes than available cores, but if 

they all are CPU-intensive loss of performance will occur due 

to a cost of switching between processes.

Running programs: processes

Session 13: Parallelization with Perl



Perl for Biologists 1.2 9

Process is always created by system, but the creation may be 

requested by another process (e.g. system() function).

The are three ways for creating processes:

• Invoking a new program on the same machine
e.g. system()

• Invoking a new program on different (remote) machine
e.g. ssh

• Creating a clone of current process (always on the same 

machine)
fork() function

Running programs: processes

Session 13: Parallelization with Perl



Perl for Biologists 1.2 10

Starting processes with system()

Session 13: Parallelization with Perl

system()

system()

Process B

will wait for 

Process B to finish 

before proceeding 

SYSTEM loads new file and starts 

process



Perl for Biologists 1.2 11

Starting processes with ssh

Session 13: Parallelization with Perl

SSH

SSH

Process B

machine 2

will wait for 

Process B to finish 

before proceeding 

connects to 

machine2
SYSTEM on machine2 

loads file and starts 

Process B



Perl for Biologists 1.2 12

Starting processes with fork()

Session 13: Parallelization with Perl

fork()

fork()

SYSTEM clones 

Process A in memory
fork()

Process B

fork()

Process B

same PID new PID

NO waiting



Perl for Biologists 1.2 13

Processes may talk to each other using

• Pipes – output from one may be input to another

• Files – one program may write and other read the same file

• Signals - special, pre-defined, messages passed from one to 

another process via OS (SIGINT = CTRL-C, SIGTERM, SIGKILL 

etc.).

• Special libraries - there are libraries specializing in inter-

process communication (Message Passing Interface, MPI)

Running programs: processes

Session 13: Parallelization with Perl



Perl for Biologists 1.2 14

There is a way to execute more 

than one set of commands inside 

the same process – by using 

more than one execution queue.

Each separate execution queue is 

a thread, they all have access to 

the same memory, environment 

etc. inside the process.

Threads

Session 13: Parallelization with Perl

Threads



Perl for Biologists 1.2 15

Threads

Session 13: Parallelization with Perl

single thread process multithread process

Copied from https://computing.llnl.gov/tutorials/pthreads/



Perl for Biologists 1.2 16

Multi-processing (distributed):

Multiple separate processes on the same or different machines 

coordinating their execution via passing data or messages. They cannot 

read each others memory.

Parallel execution 

Session 13: Parallelization with Perl

Execution 

queue

Instruction1

Instruction2

Instruction3

Instruction4

start

Execution 

queue

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue

Instruction1

Instruction2

Instruction3

Instruction4

Process 1 Process 2
Process 3



Perl for Biologists 1.2 17

Multi-threading (shared memory):

There is only one process with multiple execution queues inside. Threads 

communicate via messages or memory access – each thread has access to 

the same memory area.

Parallel execution 

Session 13: Parallelization with Perl

start
Execution 

queue 1

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue 2

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue 3

Instruction1

Instruction2

Instruction3

Instruction4



Perl for Biologists 1.2 18

Multi-processing (distributed) with multi-threading :

Multiple separate processes on the same or different machines 

coordinating their execution via passing data or messages, each 

multithreaded. 

Parallel execution 

Session 13: Parallelization with Perl

start

Process 1 Process 2
Process 3

Execution 

queue 2

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue 2

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue 2

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue 1

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue 1

Instruction1

Instruction2

Instruction3

Instruction4

Execution 

queue 1

Instruction1

Instruction2

Instruction3

Instruction4



Perl for Biologists 1.2 19

Deciding between multithreading and multiprocessing usually comes down 

to I/O versus CPU requirements.

CPU intensive

Very good for same machine multiprocessing.

I/O intensive

Good for same machine multithreading, or multiprocessing on SEPARATE 

machines (each of them does its own I/O).

I/O intensive and CPU intensive

Best for multiprocessing on SEPARATE machines, each process 

multithreaded.  

Parallel execution 

Session 13: Parallelization with Perl



Perl for Biologists 1.2 20

This function clones the current process – the new process is 

identical to the previous one, except it has a new PID.

On the original process (master) the function returns the new 

PID of the new process (child).

On the new process (child) the function returns 0.

On error the function returns -1.

fork() 

Session 13: Parallelization with Perl



Perl for Biologists 1.2 21

fork() 

Session 13: Parallelization with Perl

my $pid = fork();

if($pid < 0)

{

#error

print "ERROR: Cannot fork $!\n";

#further error handling code

exit;

}

elsif($pid == 0)

{

#child code

child_exec();

exit;

}

else

{

#master code

master_exec();

exit;

}



Perl for Biologists 1.2 22

• we have a set of tasks that do not communicate with each 

other during execution

• our program should execute them on one machine in 

parallel, with maximum number of processes limited to a 

pre-defined number

• for this example will use a toy child execution: each child 

should sleep a random number of seconds between 5 and 

20.

multi-process parallelization example: same machine

Session 13: Parallelization with Perl



Perl for Biologists 1.2 23

• Master process will be devoted to process control

• Master will created child processes, up to maximum allowed 

limit

• Child processes will execute the “work” part

• Master will monitor child processes, when a child process 

finishes, master will create another child process if there are 

unprocessed tasks left

multi-process parallelization example: algorithm

Session 13: Parallelization with Perl



Perl for Biologists 1.2 24

This function is used to monitor condition of child process

my $result = waitpid($pid, WNOHANG);

WNOHANG flag tells waitpid to return the status of the 

child process with given pid $pid WITHOUT waiting for this 

process to complete.

If the return value is less or equal 0 the child process still exists 

and is running.

Otherwise the return value is the completion code of the 

process – same as system().

waitpid()

Session 13: Parallelization with Perl



Perl for Biologists 1.2 25Session 13: Parallelization with Perl

script1.pl (1)

#!/usr/local/bin/perl

use POSIX ":sys_wait_h";

my $maxtask = 8;

my $ntasks = 15;

#initial fork child processes

my @procs;

my $task = 0;

print "STARTING: maxtask=$maxtask ntasks=$ntasks\n";

for(my $i=0; $i<$maxtask; $i++)

{

$task++;

print "starting child $i task $task ";

$procs[$i] = start_task($i, $task, @procs);

print " pid $procs[$i]\n";

}

#waiting for child processes to finish and execute remaining tasks in their place

need this module 

for fork()



Perl for Biologists 1.2 26

script1.pl (2)while(1)

{

sleep(1); #there is no need to check every millisecond - it would use too much CPU

my $n=0;

for(my $i=0; $i<=$#procs; $i++)

{

if($procs[$i] != 0)

{

my $kid = waitpid($procs[$i], WNOHANG);

if($kid <= 0)

{

$n++; #process exists

}

else

{

print "Child " . ($i+1) . " finished (pid=" . $procs[$i] . ")\n";

$procs[$i] = 0 ;

if($task < $ntasks)

{

$task++;

$procs[$i] = start_task($i, $task, @procs);

print " child " . ($i+1) . " restarted for task $task with pid $procs[$i] \n";

$n++;

}

}

}

}

if($n==0){last;}

}

print "ALL DONE\n";

waitpid() checks the 

status of a child process,

WNOHANG flag means 

no waiting – just 

immediate status return

Session 13: Parallelization with Perl



Perl for Biologists 1.2 27

script1.pl (3)

sub start_task

{

my ($i, $task, @procs) = @_;

my $pid = fork();

if($pid < 0)

{

#error

print "\n\nERROR: Cannot fork child $i\n";

for(my $j=0; $j<=$#procs; $j++)

{

system("kill -9 " . $procs[$j]);

}

exit;

}

if($pid == 0)

{

#child code

child_exec($i+1, $task);

exit;

}

#master - continue, $pid contains child pid

return $pid;

}

Session 13: Parallelization with Perl



Perl for Biologists 1.2 28

script1.pl (4)

sub child_exec

{

my ($num, $tasknum) = @_;

my $seed = time * $num * $num;

srand($seed);

$nsec = int(rand(20)) + 5;

#print "CHILD $num: task number $tasknum, wait time $nsec sec\n";

sleep($nsec);

}

Session 13: Parallelization with Perl



Perl for Biologists 1.2 29

• we have a set of genes and we want to run PAML program 

on each of them

• our program should execute them on one machine in 

parallel, with maximum number of processes limited to a 

pre-defined number

• The program needs to prepare a directory to run each gene, 

then execute PAML in parallel

multi-process parallelization example: same machine

PAML simulation

Session 13: Parallelization with Perl



Perl for Biologists 1.2 30

The program should be run from local directory on the 

workstation, i.e. /workdir

Here is the script used to set up the local data

#!/bin/bash

mkdir /workdir/jarekp

cd /workdir/jarekp

tar -xzf /home/jarekp/perl_13/paml4.7.tgz

cp -R /home/jarekp/perl_13/seqdata .

cp /home/jarekp/perl_13/mytree.dnd .

cp /home/jarekp/perl_13/template.control .

multi-process parallelization example: same machine

PAML simulation

Session 13: Parallelization with Perl



Perl for Biologists 1.2 31Session 13: Parallelization with Perl

script2.pl (1)#!/usr/local/bin/perl

use POSIX ":sys_wait_h";

my $maxtask = 8;

my $ntasks = 0;

my @tasklist;

#PAML parameters

my $pamlcmd = "/workdir/jarekp/paml4.7/bin/codeml";

my $template_control_file = "template.control";

my $tree = "mytree.dnd";

my $datadir = "seqdata";

my $outdir = "results";

if(! -e $template_control_file)

{

print "Template control file is NOT available\n";

exit;

}

if(! -e $tree)

{

print "Tree file is NOT available\n";

exit;

}

if(! -d $datadir)

{

print "The data directory is NOT available\n";

exit;

}



Perl for Biologists 1.2 32Session 13: Parallelization with Perl

script2.pl (2)if(! -d $outdir)

{

mkdir $outdir;

}

print "Preparing PAML and input files\n";

#put template control files in a variable.

#a new control file will be created for each gene

open (IN, $template_control_file) 

or die "The template control file $template_control_file cannot be opened";

my $template_control_content = "";

while (<IN>)

{

$template_control_content .= $_;

}

close IN;

#get the list of files in seqdata

opendir(my $dh, $datadir) || die "can't opendir $datadir: $!";

my @alnfiles;

foreach my $entry (readdir($dh))

{

if($entry =~ /\.phy$/)

{

push(@alnfiles, $entry);

}

}

closedir $dh;



Perl for Biologists 1.2 33Session 13: Parallelization with Perl

script2.pl (3)#prepare directories - one for each gene

#store their names in @tasklist

foreach my $alnfile (@alnfiles)

{

my $seqid = $alnfile;

$seqid =~ s/\..+//;

my $outseqdir = $outdir. "/". $seqid;

if (! -d $outseqdir)

{

mkdir $outseqdir;

system ("cp $tree $outseqdir/" );

system ("cp $datadir/$alnfile $outseqdir/" );

}

my $mycontrolfile = $template_control_content;

$mycontrolfile=~s/XXXXXX/$alnfile/;

open CC, ">$outseqdir/my.control";

print CC $mycontrolfile;

close CC;

push(@tasklist, $outseqdir);

}

my $ntasks = $#tasklist + 1;

print "We have $ntasks genes to run\n";



Perl for Biologists 1.2 34Session 13: Parallelization with Perl

script2.pl (4)#initial fork child processes

my @procs;

my $task = 0;

print "STARTING: maxtask=$maxtask ntasks=$ntasks\n";

for(my $i=0; $i<$maxtask; $i++)

{

$task++;

print "starting child " . ($i+1) . " task $task\n";

$procs[$i] = start_task($tasklist[$task-1], $pamlcmd, @procs);

print " child " . ($i+1) . " task $task started with pid $procs[$i]\n";

}

#waiting for child processes to finish and execute remaining tasks in their place

while(1)

{

sleep(1); #there is no need to check every millisecond-it would use too much CPU

my $n=0;

for(my $i=0; $i<=$#procs; $i++)

{

if($procs[$i] != 0)

{

my $kid = waitpid($procs[$i], WNOHANG);

if($kid <= 0)

{

#process exists

$n++;

}



Perl for Biologists 1.2 35Session 13: Parallelization with Perl

script2.pl (5)else

{

print "Child " . ($i+1) . " finished (pid=" . $procs[$i] . ")\n";

$procs[$i] = 0 ;

if($task < $ntasks)

{

$task++;

$procs[$i] = start_task($tasklist[$task-1], $pamlcmd, @procs);

print " child " . ($i+1) . " restarted for task $task with pid $procs[$i]\n";

$n++;

}

}

}

}

if($n==0){last;}

}

print "ALL DONE\n";

sub child_exec

{

my ($outseqdir, $pamlcmd) = @_;

chdir($outseqdir);

system("$pamlcmd my.control >& log");

}



Perl for Biologists 1.2 36Session 13: Parallelization with Perl

script2.pl (6)sub start_task

{

my ($taskstr, $pamlcmd, @procs) = @_;

my $pid = fork();

if($pid < 0)

{

#error

print "\n\nERROR: Cannot fork child $i\n";

for(my $j=0; $j<=$#procs; $j++)

{

system("kill -9 " . $procs[$j]);

}

exit;

}

if($pid == 0)

{

#child code

child_exec($taskstr, $pamlcmd);

exit;

}

#master - continue, $pid contains child pid

return $pid;

}



Perl for Biologists 1.2 37

• We have a set of sequences in one fasta file 

(sequences.fasta)

• Our program should BLAST them against RefSeq mammalian 

RNA on a pre-defined set of machines in parallel, each 

BLAST should use multiple cores on each machine (BLAST 

supports multithreading)

• The fasta file should be split into blocks, each containing 5 

sequences

• Each block should be searched as one unit on each machine

multi-process parallelization example: different machines

BLAST search

Session 13: Parallelization with Perl



Perl for Biologists 1.2 38

>ssh-keygen -t rsa

(use empty password when prompted)

>cat .ssh/id_rsa.pub >> .ssh/authorized_keys

>chmod 640 .ssh/authorized_keys

>chmod 700 .ssh

Before running parallel script make sure you can ssh from your 

master machine to all machines listed in the script

ssh without password in BioHPC Lab

(between workstations)

Session 13: Parallelization with Perl



Perl for Biologists 1.2 39Session 13: Parallelization with Perl

script3.pl (1)#!/usr/local/bin/perl

use POSIX ":sys_wait_h";

my $maxtask = 4;

my @machines = qw(localhost cbsum1c2b015 cbsum1c2b014 cbsum1c2b012);

my $ntasks = 0;

my @tasklist;

my $exe = "/home/jarekp/perl_13/script3exe.pl";

my $datadir = "/home/jarekp/perl_13/data3";

my $outdir = "/home/jarekp/perl_13/out3";

my $fastafile = "/home/jarekp/perl_13/sequences.fa";

my $blocksize = 5;



Perl for Biologists 1.2 40Session 13: Parallelization with Perl

script3.pl (2)print "Splitting large fasta file\n";

open (IN, $fastafile) or die "Fasta file $fastafile cannot be opened";

my $scount = 0;

my $block = 0;

my $line = 0;

while (my $txt=<IN>)

{

$line++;

if($txt =~ /^>/){$scount++;}

if(($scount-1)%$blocksize == 0 && ($line-1)%2 == 0)

{

if($block>0){close(BLOCK);}

$block++;

open BLOCK, ">$datadir/block$block";

push(@tasklist, "block$block");

}

print BLOCK $txt;

}

close IN;

close BLOCK;

my $ntasks = $#tasklist + 1;

print "We have $ntasks blocks to blast\n";



Perl for Biologists 1.2 41Session 13: Parallelization with Perl

script3.pl (3)#initial fork child processes

my @procs;

my $task = 0;

print "STARTING: maxtask=$maxtask ntasks=$ntasks\n";

for(my $i=0; $i<$maxtask; $i++)

{

$task++;

print "starting child " . ($i+1) . " task $task\n";

$procs[$i] = start_task($tasklist[$task-1], $machines[$i], $exe, @procs);

print " child " . ($i+1) . " task $task started with pid $procs[$i]\n";

}

#waiting for child processes to finish and execute remaining tasks in their place

while(1)

{

sleep(1); #there is no need to check every millisecond-it would use too much CPU

my $n=0;

for(my $i=0; $i<=$#procs; $i++)

{

if($procs[$i] != 0)

{

my $kid = waitpid($procs[$i], WNOHANG);

if($kid <= 0)

{

#process exists

$n++;

}



Perl for Biologists 1.2 42Session 13: Parallelization with Perl

script3.pl (4)else

{

print "Child " . ($i+1) . " finished (pid=" . $procs[$i] . ")\n";

$procs[$i] = 0 ;

if($task < $ntasks)

{

$task++;

$procs[$i] = start_task($tasklist[$task-1], $machines[$i], $exe, @procs);

print " child " . ($i+1) . " restarted for task $task with pid $procs[$i]\n";

$n++;

}

}

}

}

if($n==0){last;}

}

print "ALL DONE\n";



Perl for Biologists 1.2 43Session 13: Parallelization with Perl

script3.pl (5)sub start_task

{

my ($datafile, $machine, $cmd, @procs) = @_;

my $pid = fork();

if($pid < 0)

{

#error

print "\n\nERROR: Cannot fork child $i\n";

for(my $j=0; $j<=$#procs; $j++)

{

system("kill -9 " . $procs[$j]);

}

exit;

}

if($pid == 0)

{

#child code

child_exec($datafile, $machine, $cmd);

exit;

}

#master - continue, $pid contains child pid

return $pid;

}



Perl for Biologists 1.2 44Session 13: Parallelization with Perl

script3.pl (6)

sub child_exec

{

my ($datafile, $machine, $cmd) = @_;

if($machine eq "localhost")

{

system("$cmd $datafile");

}

else

{

system("ssh $machine $cmd $datafile");

}

}



Perl for Biologists 1.2 45Session 13: Parallelization with Perl

script3exe.pl 

#!/usr/local/bin/perl

my $seqfile = $ARGV[0];

my $tempdir = "/workdir/jarekp";

my $local_dbdir = "/workdir/jarekp/db";

my $dbname = "RefSeq_mammalian.rna";

my $orig_dbdir = "/shared_data/genome_db/BLAST_NCBI";

my $datadir = "/home/jarekp/perl_13/data3";

my $outdir = "/home/jarekp/perl_13/out3";

if(! -e $tempdir){mkdir $tempdir;}

if(! -e $local_dbdir){mkdir $local_dbdir;}

if(! -e "$local_dbdir/$dbname.nal")

{system("cp -f $orig_dbdir/$dbname.* $local_dbdir");}

my $temprundir = $tempdir . "/" . $seqfile;

mkdir $temprundir;

chdir($temprundir);

system("cp $datadir/$seqfile .");

system("blastall -a 8 -d $local_dbdir/$dbname -i $seqfile -o $seqfile.out -p 

blastn >\& $seqfile.log");

system("cp $seqfile.out $outdir");

system("cp $seqfile.log $outdir");

chdir("..");

system("rm -rf $seqfile");



Perl for Biologists 1.2 46

Exercises

Session 13: Parallelization with Perl

1. Modify script1.pl so it executes commands (tasks) from a file (one task per line), 

each in separate directory. Print out total execution time of all tasks and average 

execution time per task (in seconds).  


