
Perl for Biologists

Session 14
June 3, 2015

Practical example

Robert Bukowski

Session 14: Practical example Perl for Biologists 1.2 1

Process is an object of UNIX (Linux) kernel identified by process id (PID, an integer), having an
allocated region in memory containing code (binary instructions), execution queue(s), data
(variables), environment (variables, arguments etc.), communication handles, etc.

Operating system can create a process at a request by another process. Request can be made
using
• system() function – child process starts on the same machine, parent process waits

for the completion of the child process before proceeding

• ssh – child process starts on a different machine, parent waits for the child process to
finish before proceeding

• fork() function – child process is created on the same machine and is a clone of the
parent process (it has an identical copy of all data, instruction set, etc.); parent process
does not wait (it continues right after the clone is created).
• Parent and clone processes have different process IDs
• Parent and clone run concurrently
• Parent can proceed to create more clones, and clones may spawn their own

clones,…

Processes can communicate via pipes, files, signals, and/or special libraries (like Message
Passing Interface [MPI] library)

Session 14: Practical example Perl for Biologists 1.2 2

Session 13 review

Multithreading: a way to execute multiple (possible different) sets of commands
within a single process by using multiple execution queues

• All threads (execution queues) have access to the same memory, environment,
etc.
• Unlike fork(), where each process can only access its own memory

segment

• No (or minimal) data replication
• Unlike fork(), where whole process memory is replicated

• Good if parallelization requires access to whole large data set in each thread
(rather than just to a part of the data set)

Mixed parallelization model:
• Multiple processes created with fork()
• Each (or some) of these processes may be multithreaded
• Considerations: CPU, memory, and I/O requirements

Session 14: Practical example Perl for Biologists 1.2 3

Session 13 review

my $pid = fork();

if($pid < 0)

{

#error

print "ERROR: Cannot fork $!\n";

#further error handling code

exit;

}

elsif($pid == 0)

{

#child code

child_exec();

exit;

}

else

{

#master code

master_exec();

exit;

}

Function used to monitor condition of child process

my $result = waitpid($pid, WNOHANG);

WNOHANG flag tells waitpid to return the status of the child process with given pid $pid
WITHOUT waiting for this process to complete.

Session 14: Practical example Perl for Biologists 1.2 4

Session 13 review: fork()

• Execute a set of independent tasks listed in a file (one command per
line)

• Master process devoted to process control
• Master will create child processes, up to maximum allowed limit
• Child processes will execute the “work” part, each task in a separate

directory
• Master will monitor child processes, when a child process finishes,

master will create another child process if there are unprocessed tasks
left

• Master will measure execution time of each task and report total time
and average time per task

Multi-process parallelization example using fork()

Red: modifications to script1.pl example assigned as homework

Solution: in /home/jarekp/perl_13
exercise1.pl script (modified script1.pl)
exercise1exe.pl toy script (to be executed as task)
exercise1.tasks list of tasks to be run through exercise1.pl

Session 14: Practical example Perl for Biologists 1.2 5

Session 13 review

For each position on reference genome, scan through the stack of aligning reads (pileup)
and determine the numbers of reads carrying each allele (allele depths) and average base
qualities

Call SNP if
enough overall depth at the site (>=5?)
non-reference alleles are significant proportion of total depth (>=0.25?)
sufficient average base quality (>=20?)

This is a very primitive approach to SNP calling – DO NOT use in real research

However, more involved (and more correct) SNP callers can be developed using the allele
depth and quality information

Session 14: Practical example Perl for Biologists 1.2 6

Today’s exercise: write a simple SNP caller

A

A

A
T

C

Reference

R
ea

d
s

Simple SNP caller workflow

Session 14: Practical example Perl for Biologists 1.2 7

Generate pileup information (output one line per position) using samtools program

samtools mpileup –f reference.fa alignments.bam -r Chr1:200-5000

Reference genome sequence
(reference.fa, reference.fa.fai)

Alignment
(alignments.bam,
alignments.bam.bai)

Region to process
(chromosome, start, end)

For each ouput line (position on the genome)
extract allele depth from base pileup string
extract base qualities and compute per-allele averages
decide if allele depths and qualities indicate a SNP

if yes, output position, SNP, and allele depths

Chr1 997 T 4 .^k.,. CHH;

Chr1 1000 G 4 ..aT 8;?A

Chr1 1006 G 5 ..-3GCT,,-3gct.-3GCT <?ABC

Chr1 1007 G 5 .*,** C!H!!

Chr1 1008 C 5 .*,** 1!9!!

Chr1 1009 T 5 .*,** 7!9!!

Chr1 1025 C 5 ..+4CGTA,+4cgta,. >>>;>

Chr1 1036 G 5 .$.,,. -/0HE

in Perl

Session 14: Practical example Perl for Biologists 1.2 8

Implementation

We will implement the workflow as a function snp_call_range(). This function,
as well as a couple of other auxiliary functions, will be collected in file
simple_snpcaller.pl

The main program calling this function is simple:

#!/usr/local/bin/perl

Load the functions

require "simple_snpcaller.pl";

Read the input parameters

my ($bamfile,$reffasta,$chr,$range_start,$range_end) = @ARGV[0..4];

Do the SNP-calling

snp_call_range($bamfile,$reffasta,$chr,$range_start,$range_end);

print "SNP calling done";

sub snp_call_range

{

my ($bamfile,$reffasta,$chr0,$range_start,$range_end) = @_;

my $range = $range_start . "-" . $range_end;

my $cmd = "samtools mpileup -f $reffasta $bamfile -r $chr0:$range ";

open(in,"$cmd |");

open(out,">output.$range");

my ($line, $chr, $pos, $refbase0, $refbase, $pstr, $qstr, $depth);

my @aux; my @allele_nums; my @allele_qc;

while($line=<in>)

{

chomp $line;

@aux = split "\t", $line;

($chr, $pos, $refbase0) = @aux[0..2];

($depth, $pstr, $qstr) = @aux[3..5];

$refbase = uc $refbase0;

if($depth > 0)

{

(@allele_nums[0..5], @allele_qc[0..5]) = analyze_pileup_strs($pstr,$qstr,$refbase);

my ($issnp, $majornonref) = primitive_snp_caller(@allele_nums, @allele_qc, $refbase);

if($issnp)

{

print out "$chr\t$pos\t$refbase/$majornonref";

for(my $i=0;$i<=5;$i++)

{

print out "\t$allele_nums[$i]";

}

print out "\n";

}

}

}

close in; close out;

} Session 14: Practical example Perl for Biologists 1.2 9

AGTCCGTGAATGGCTGATGATGAAAATGGAC----ATCGTGTACGTGCCCGTGC  (Ref)

AGTCCGTGAATGGCTGATGATGAAAATGGAC----ATCGTGTACGTGCCCGTGC 

TCCGTGAATG---GATGATGAAAATGGACCGTAATCGTGTACG 

GAATGGCTGATGATGAAAATGGACCGTAATCGTGTACGTGCCCGTGC 

AGTCCATGAATG---GATGATGAAAATGGAC----ATCGTGTACGTGCCCGTGC 

AGTCCTTGAATG---GATGATGAAAATGGAC----ATCGTGTACGTGCCCGTGC 

Chr1 997 T 4 .^k.,. CHH;

Chr1 1000 G 4 ..aT 8;?A

Chr1 1006 G 5 ..-3GCT,,-3gct.-3GCT <?ABC

Chr1 1007 G 5 .*,** C!H!!

Chr1 1008 C 5 .*,** 1!9!!

Chr1 1009 T 5 .*,** 7!9!!

Chr1 1025 C 5 ..+4CGTA,+4cgta,. >>>;>

Chr1 1036 G 5 .$.,,. -/0HE

997 1000 1006 1025 1036

Example alignment

Samtools mpileup output

R
ead

s

Session 14: Practical example Perl for Biologists 1.2 10

samtools mpileup: how does it work

First, ignore (remove) start and end of read markers

$pstr =~ s/\$//g;

$pstr =~ s/\^[\x00-\x7F]//g;

analyze_pileup_strs()

my @matches = ($pstr =~ m/(-[0-9]+[ACGTNacgtn]+)/g);

foreach $mtch (@matches)

{

$mtch =~ /-([0-9]+)/;

$len = $1 + 0;

$torepl = "$len" . substr($mtch,length($1)+1,$len);

$pstr =~ s/-$torepl//g;

}

$pstr =~ s/*/D/g;

(all reads carrying the deletion * will have allele “D”)

Session 14: Practical example Perl for Biologists 1.2 11

Process deletions

Purpose: extract allele depths and average qualities from pileup strings

@matches = ($pstr =~ m/(\+[0-9]+[ACGTNacgtn]+)/g);

foreach $mtch (@matches)

{

$mtch =~ /\+([0-9]+)/;

$len = $1 + 0;

$torepl = "$len" . substr($mtch,length($1)+1,$len);

replace each insertion by an "allele" I, regardless of length

or sequence of the insert

$pstr =~ s/.\+$torepl/I/g;

$pstr =~ s/,\+$torepl/I/g;

}

Process insertions:

All reads carrying insertion will have allele called “I”, regardless of
sequence or length of the insertion.

String $pstr now contains only characters [.,ACGTacgtIDNn] (., stand for
reference allele)

Now we can count occurrences and average base qualities of various
alleles….

Session 14: Practical example Perl for Biologists 1.2 12

analyze_pileup_strs() - continued

About base quality score notation

Base qualities reported by a sequencing platform are given in terms of the
phred score 𝑸 which is an integer number such that

𝑒 = 10−0.1𝑄
is the probability that the base call is wrong.

In the FASTQ format (and in BAM files), the phred score is represented by
a single character with ASCII code

𝑄 + 33
(this is the so-called phred+33 representation; older Illumina platforms
used numbers other than 33).

Thus, in perl, the phred score can be computed as

my $q = ord($qualchar) – 33;

where $qualchar is the variable holding a character read from FASTQ
or BAM file.

Session 14: Practical example Perl for Biologists 1.2 13

Now we can count occurrences and average base qualities of various
alleles:

Convert the base string to array of characters:

my @apstr = split //, $pstr;

Convert the quality string to array of characters:

my @aqstr = split //, $qstr;

Loop over all elements of the arrayas

for($i=0;$i<=$#apstr;$i++)

{

Set the allele and update its counter

$base = uc $refbase;

if($apstr[$i] ne "." && $apstr[$i] ne ",")

{

$base = uc $apstr[$i] ;

}

$basecount{$base}++;

Update the quality score for this allele

quality scores are given in phred+33 notation

$myqc = ord($aqstr[$i]) - 33; # ord() converts char into number (ASCII code)

$qscore{$base} += $myqc;

}

Session 14: Practical example Perl for Biologists 1.2 14

analyze_pileup_strs() - continued

Normalize the quality scores

foreach $base (keys %basecount)

{

if($basecount{$base} eq "") { next; }

if($basecount{$base} > 0)

{

$qscore{$base} = $qscore{$base}/$basecount{$base};

}

}

Session 14: Practical example Perl for Biologists 1.2 15

Compute averages of quality scores (per allele)

Wrap it all in a function:

sub analyze_pileup_strs

{

use strict;

my $pstr = @_[0];

my $qstr = @_[1];

my $refbase = @_[2];

Process the base string

#......

Count alleles and calculate average base qualities

#.........

Return the results

my @allele_nums=($basecount{"A"},$basecount{"C"},$basecount{"G"},$basecount{"T"},$basecount{"I"},

$basecount{"D"});

my @allele_qc=($qscore{"A"},$qscore{"C"},$qscore{"G"},$qscore{"T"},$qscore{"I"},$qscore{"D"});

return (@allele_nums,@allele_qc);

}

The function is called from within main program as:

get $pstr (base pileup string) and $qstr (base quality string) from samtools pileup

my @allele_nums;

my @allele_qc;

(@allele_nums[0..5], @allele_qc[0..5]) = analyze_pileup_strs($pstr,$qstr,$refbase);

Session 14: Practical example Perl for Biologists 1.2 16

analyze_pileup_strs() - continued

Call SNP if
enough overall depth at the site (>=5?)
non-reference alleles are significant proportion of total depth (>=0.25?)
sufficient average base quality (>=20?)

This is a very primitive approach to SNP calling – DO NOT use in real research

However, more involved (and more correct) SNP callers can be developed using the allele
depth and quality information returned by analyze_pileup_strs routine.

Session 14: Practical example Perl for Biologists 1.2 17

primitive_snp_caller()

If SNP detected, write position, SNP, and allele depths to an output file
• Name of the output file should reflect the range of coordinates

processed (e.g., output.2000-50000, etc.)

This is a very primitive SNP caller - don't use for real research...

sub primitive_snp_caller

{

my @alleles = ("A","C","G","T","I","D");

my @allele_nums;

my @allele_qc;

my $refbase;

(@allele_nums[0..5], @allele_qc[0..5],$refbase) = @_;

Count total depth and the depth of non-reference alleles

Record the major non-reference allele

my $totdepth = 0;

my $nonrefdepth = 0;

my $majornonrefbase = "";

my $maxnonref = 0;

my $avqc = 0;

for(my $i=0;$i<=5;$i++)

{

$totdepth += $allele_nums[$i];

$avqc += $allele_qc[$i] * $allele_nums[$i];

if($alleles[$i] ne $refbase)

{

$nonrefdepth += $allele_nums[$i];

if($allele_nums[$i] > $maxnonref) { $maxnonref = $allele_nums[$i];

$majornonrefbase = $alleles[$i];}

}

}

$avqc = $avqc/$totdepth;

… function continues on next slide…….

Session 14: Practical example Perl for Biologists 1.2 18

…. SNP caller continued...

Report a SNP if:

enough total depth

sufficient average base quality

non-reference alleles are substantial portion of depth

my $nonreffrac = $nonrefdepth/$totdepth;

if($totdepth >= 5 && $nonreffrac >= 0.25 && $avqc >= 20)

{

return (1, $majornonrefbase);

}

return (0,"");

}

In the main program, the function is called like this

my ($issnp,$majornonref)=primitive_snp_caller(@allele_nums,@allele_qc, $refbase);

If $issnp=1, the SNP has been found and $majornonref contains the most abundant
alternative allele.

Session 14: Practical example Perl for Biologists 1.2 19

primitive_snp_caller() - continued

Stitching it all together:

• Collect all three functions in one file, say simple_snpcaller.pl
• The functions are re-usable – can be called from any higher-level perl program
• Write a simple main program to test everything (main_snp_caller.pl)

#!/usr/local/bin/perl

Load the functions

require "simple_snpcaller.pl";

Read the input parameters

my ($bamfile,$reffasta,$chr,$range_start,$range_end) = @ARGV[0..4];

Do the SNP-calling

snp_call_range($bamfile,$reffasta,$chr,$range_start,$range_end);

print "SNP calling done";

Session 14: Practical example Perl for Biologists 1.2 20

Running the program

Session 14: Practical example Perl for Biologists 1.2 21

Create your working directory (if not yet there)
cd /workdir

mkdir abc123 (if directory not yet there; substitute your login ID for “abc123”)
cd abc123

Copy the example data files and scripts, link to reference sequence file
cp /shared_data/misc/maizev2/maize.fa .

cp /home/jarekp/perl_14/*.bam* .

cp /home/jarekp/perl_14/*.pl .

Run the example
./main_snp_caller.pl alignments.bam maize.fa 10 50000000 53000000 >& log &

Fragment of output file (after about 2 minutes): output.50000000-53000000
10 50000142 A/T 4 0 0 5 0 0

10 50001220 T/C 0 7 0 0 0 0

10 50001355 G/T 0 0 6 6 0 0

10 50001791 A/I 4 0 0 0 9 0

10 50002119 C/A 6 3 0 0 0 0

10 50002227 C/T 0 8 0 3 0 0

10 50002322 G/T 1 0 11 5 0 0

10 50002816 A/T 3 0 0 5 0 0

10 50002847 A/G 6 0 3 0 0 0

10 50003085 G/A 3 0 8 1 0 0

10 50003534 C/T 0 5 0 4 0 0

10 50004378 G/A 3 0 4 0 0 0

Homework:

Parallelize the SNP calling by splitting the chromosome region into smaller sub-regions
and processing multiple such sub-regions concurrently using a pre-defined number of
CPU cores.

Hint: modify script1.pl of Session 13:

• require “simple_snpcaller.pl”

• Read in all needed parameters from command line in the beginning of
script1.pl

• Convert main_snp_caller.pl into a function child_exec() [see
script1.pl] that accepts appropriate arguments

• Modify function start_task() [see script1.pl] to accept appropriate
arguments

Session 14: Practical example Perl for Biologists 1.2 22

