RNA-seq Data Analysis

Qi Sun
Bioinformatics Facility
Biotechnology Resource Center
Cornell University

• Lecture 1. RNA-seq read alignment

• Lecture 2. Quantification, normalization & differentially expressed gene detection

• Lecture 3. Clustering; Function/Pathway Enrichment analysis
RNA-seq Experiment

mRNA

cDNA Fragments (100 to 500 bp)

Sequencing the end(s) of cDNA fragments
Some experimental aspects relevant to data analysis

Single End

Paired End

Stranded

Unstranded
Some experimental aspects relevant to data analysis

Long sequence reads

50 bp

150 bp

Adapter
Experimental design with good reference genome

• **Read length**
 50 to 100 bp

• **Paired vs single ends**
 Single end

• **Number of reads**
 >5 million per sample

• **Replicates**
 3 replicates
RNA-seq Experiments with NO reference genome

• Longer reads (150 bp or longer)

• Paired-end & stranded

• More reads (pooled from multiple samples)
Limitation of RNA-seq 1. Sequencing bias

mRNA

```
AAAAA
AAAAA
AAAAA
```

Not random

cDNA Fragments

```

```

Reads

```

```
Limitation of RNA-seq 1. Sequencing bias

- There are sequencing bias in RNA-seq;
- RNA-seq is for comparing same gene across different samples;
RNA-seq Data Analysis

Step 1. Map reads to gene

Step 2. Count reads per gene, estimate the transcript abundance
RNA-seq Data Analysis

Ambiguous reads placements

1. Between paralogous genes;
2. Between splicing isoforms;

Key:
- Coding sequence
- Introns
- Exons
- Splice junctions
Read-depth are not even across the same gene
Data analysis procedures
Step 1. Quality Control (QC) using FASTQC Software

1. Sequencing quality score

![Quality scores across all bases (Sanger/Illumina 1.9 encoding)](chart)
Diagnose low quality data

1. Low quality reads & reads with adapters
 • Trimming tools (FASTX, Trimmomatic, et al.)

2. Contamination (BLAST against Genbank)
 • Tool in bioHPC: fastq_species_detector

3. Correlation of biological replicates
 • MDS plot
Step 2. Map reads to genome using TOPHAT Software

- Alignment of genomic sequencing vs RNA-seq

About the files

1. Reference genome (FASTA)

>chr1
TTCTAGGTCTGCGATATTTTCTGCTATCCATTTTTGTTAACTCTTTCAATG
CATTCCACAAATACCTAAGTATTTTTAATAATGDTGTTTTTTTTTTTTT
TTTGCACTATGAAGTTTTTTCAAAATTCTTTTTAAGTGCAAAAACCTTGT
CATGTGATCGCTCAATATTTTCTAGTCGACAGCAGCTGTTCGTCAACATG
AAACCGTGCACTCCAGGAAAAAGCAGACACAGACCGGCACTCCCTTTG4GACC
CGGTTTTATACCTTTGAACTGCTCGAGGCCCTCTCAGAACCGTCTCC
CACACCCCCGCTCCAGGCTCCTCTCCGAGTACGCTGCTGAGCC
CCGGGAACCCACGCGGCGTACAGAAGATTGCGGTCTTCCCTACGAGGAGCA
GGAAGCTCCCCGGCACCAGCTGCAGGAAGACCCCGCAGGCTTCCAG
AACCAGCGACCAGCGGCGAAGACGACAGAGTTGCGGAGGCGGAACCAGGACC
CCGGAGACCCCCCCGCAGCTCTGGCGCCCAACAGCCTTGGCTCCCTCTGAGC
GCCCCAGAGCCGCCTGACAGGGCGCGCTCCAGGAGAAGCTCCGGGG
CGACCCCAAGAGCCCTCCCGGGGCGTCGGGCCCACGCGCGCGGGCTGCC
GGAGACGCCACGGCCAGCGCGCCCGAACCAGCAGCTTTGGGCAAGGC
TTCTCGTCAGAGAACGCTCCCGGGCCTCCCGGCCGCTCCTCCAGCAGCC
TCCGGGTCCCTACTTCTGGGCCCAGCAAGCCAGCCTACTCCCTCCGCC
GGCCCGAGACGCCCTCCTACCTCGAGACAGGCGCCCTCCGGAAGCTCCGGCC
GCCGTTCTCGCTTGCGGACGGCTGGCTTCTAGGCCCGGCGCCCGCCAG
TCCGGCGCCGCTCTGGGTCTTAACGCGGCGCCTGCAGCTCAGCC
CTCCGGGAGCGGCTCCAGGACCCCGGTCAGCGCCAGAGCGCTGCTGC
TGGCCCGAGTCGCGGCGCCTGGCCAGAAGCTACGCTCAGCTCCAGGCTCC
GACAGTCACAGGCTCCCACTGCGGTTGGTCTCAGCGGCTAGCGGCCGCCCC
ATACCCCGTGCTTTCTGCTCTGACGCTAGCCCGCCCTCCTTACTGACCTCCCTGCTCTTTGT
About the files

1. FASTA

2. RNA-seq data (FASTQ)

3. GFF3/GTF

4. SAM/BAM
About the files

1. FASTA

2. RNA-seq data
 (FASTQ)

3. GFF3/GTF

4. SAM/BAM

Single-end: one file per sample
Paired-end: two files per sample
About the files

1. FASTA

2. FASTQ

3. Annotation (GFF3/GTF)

4. SAM/BAM
About the files

1. FASTA

```
HWUSI-EAS525_0042_FC:6:23:10200:18582#0/1       16      1       10      40      35M
*       0       0       AGCCAAAGATTGCATCACGTTCTGCTGCTATTTCCT
agafgaffcfdf[fdccgggccccffagggg MD:Z:35 NH:i:1 HI:i:1 NM:i:0 SM:i:40
XQ:i:40 X2:i:0
```

2. FASTQ

```
HWUSI-EAS525_0042_FC:3:28:18734:20197#0/1       16      1       10      40      35M
*       0       0       AGCCAAAGATTGCATCAGTTCTGCTGCTATTTCCT
hghghghhhhhhhhhhhhhhhhhghhhfhhhh MD:Z:35 NH:i:1 HI:i:1 NM:i:0
SM:i:40 XQ:i:40 X2:i:0
```

3. GFF3/GTF

```
HWUSI-EAS525_0042_FC:3:94:1587:14299#0/1       16      1       10      40      35M
*       0       0       AGCCAAAGATTGCATCAGTTCTGCTGCTATTTCCT
hfhghhhhhhhhhhhhhhhhhhhhhhhhhh MD:Z:35 NH:i:1 HI:i:1 NM:i:0
SM:i:40 XQ:i:40 X2:i:0
```

4. Alignment (SAM/BAM)

```
D3B4KKQ1:227:D0NE9ACXX:3:1305:14212:73591       0       1       11      40      51M
*       0       0       GCCAAAGATTGCATCAGTTCTGCTGCTATTTCCTCCTACATTCTCTCTG
CCCFFGGFHHJGIHHJJJGJJGJJJGJJJGJJJGJJJGJJJGJI
MD:Z:51 NH:i:1 HI:i:1 NM:i:0
SM:i:0 SM:i:40 XQ:i:40 X2:i:0
```

```
HWUSI-EAS525_0038_FC:5:35:11725:5663#0/1       16      1       11      40      35M
*       0       0       GCCAAAGATTGCATCAGTTCTGCTGCTATTTCCTC
hhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehhehheh
MD:Z:35 NH:i:1 HI:i:1 NM:i:0
SM:i:40 XQ:i:40 X2:i:0
```
Running TOPHAT

• **Required files**
 - Reference genome. (FASTA file indexed with **bowtie2-build** software)
 - RNA-seq data files. (FASTQ files)

• **Optional files**
 - Annotation file (GFF3 or GTF)
 * If not provided, TOPHAT will try to predict splicing sites;
Running TOPHAT

tophat -G myAnnot.gff3 myGenome myData.fastq.gz

Some extra parameters

• **--no-novel**: only using splicing sites in gff/gtf file
• **-N**: mismatches per read (default: 2)
• **-g**: max number of multi-hits (default: 20)
• **-p**: number of CPU cores (BioHPC lab general: 8)
• **-o**: output directory

What you get from TOPHAT

• A BAM file per sample
 File name: accepted_hits.bam

• Alignment statistics
 File name: align_summary.txt

Input: 9230201
Mapped: 7991618 (86.6% of input)
of these: 1772635 (22.2%) have multiple alignments (2210 have >20)
86.6% overall read alignment rate.
Visualizing BAM files with IGV

* Before using IGV, the BAM files need to be indexed with “samtools index”, which creates a .bai file.
Exercise 1

• Run TOPHAT to align RNA-seq reads to genome;

• Visualize TOPHAT results with IGV;

• Learn to use Linux shell script to create a pipeline