Exercise 1 Review

Make a shell script

tophat -o A -G testgenome.gff3 --no-novel-juncs testgenome a.fastq.gz tophat -o B -G testgenome.gff3 --no-novel-juncs testgenome b.fastq.gz mv A/accepted_hits.bam ./a.bam mv B/accepted_hits.bam ./b.bam samtools index a.bam samtools index b.bam

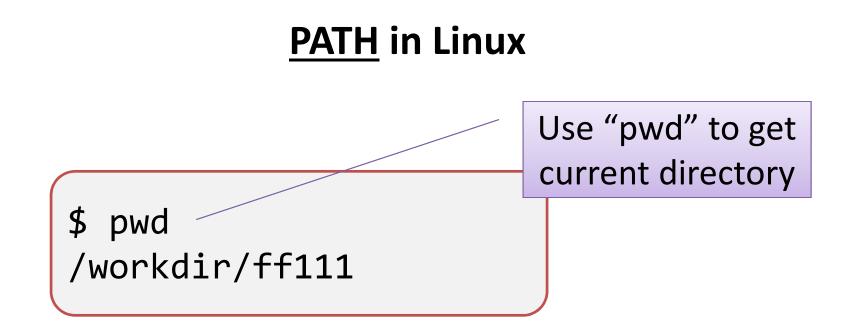
Run a shell script

nohup sh /home/my_user_ID/runtophat.sh >& mylog &

<u>PATH</u> in Linux

Absolute PATH

/workdir/mydir/myDataFile


Relative PATH

myDataFile

my_Directory/ myDataFile

./myDataFile

../ myDataFile

tophat -o mydir testgenome a.fastq.gz mv mydir/accepted_hits.bam ./a.bam

nohup sh /home/my_user_ID/runtophat.sh >& mylog &

Genome Databases for TOPHAT

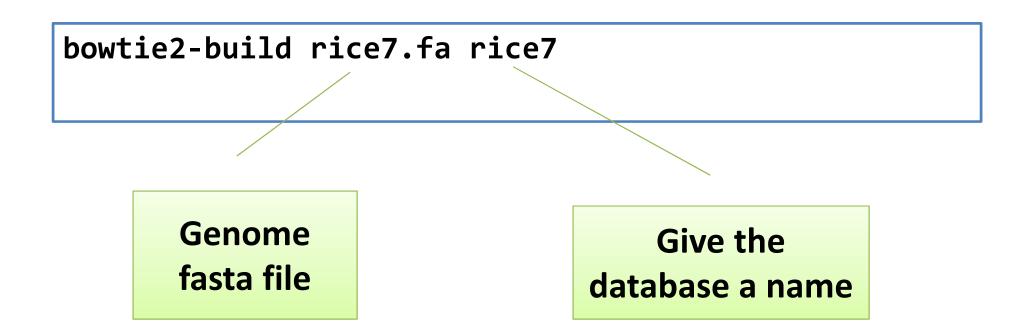
• On /local_data directory:

human, mouse, Drosophila, C. elegans, yeast, Arabidopsis, maize.

On /shared_data/genome_db/:

rice, grape, apple, older versions of databases.

Create aliases for files

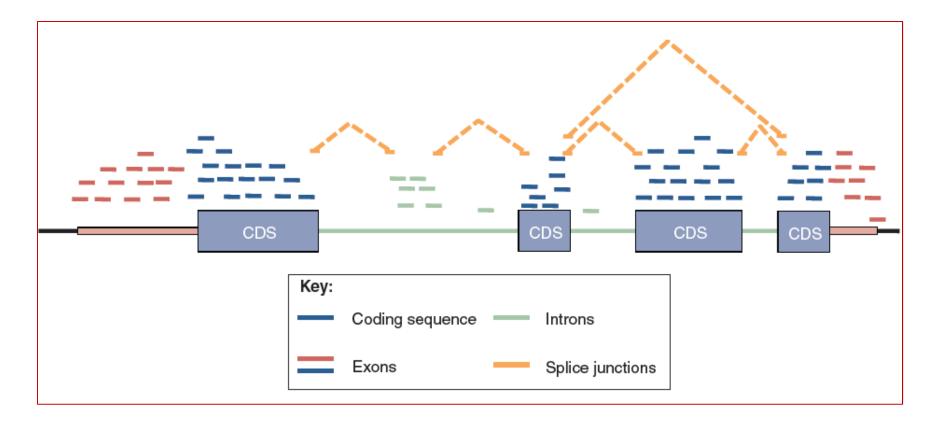

ln -s /local_data/Homo_sapiens_UCSC_hg19/Bowtie2Index/* ./

tophat /local_data/Homo_sapiens_UCSC_hg19/Bowtie2Index/genome a.fastq.gz

tophat genome a.fastq.gz

How to prepare TOPHAT genome database

* Keep a copy of the indexed genome in home directory so that the files can be reused next time


RNA-seq Data Analysis Lecture 2

1.Quantification (count reads per gene)

2. Normalization (normalize counts between samples)

3. Differentially expressed genes

Quantification: Count reads per gene

Different summarization strategies will result in the inclusion or exclusion of different sets of reads in the table of counts.

Complications in quantification 1. Multi-mapped reads

Cufflinks/Cuffdiff

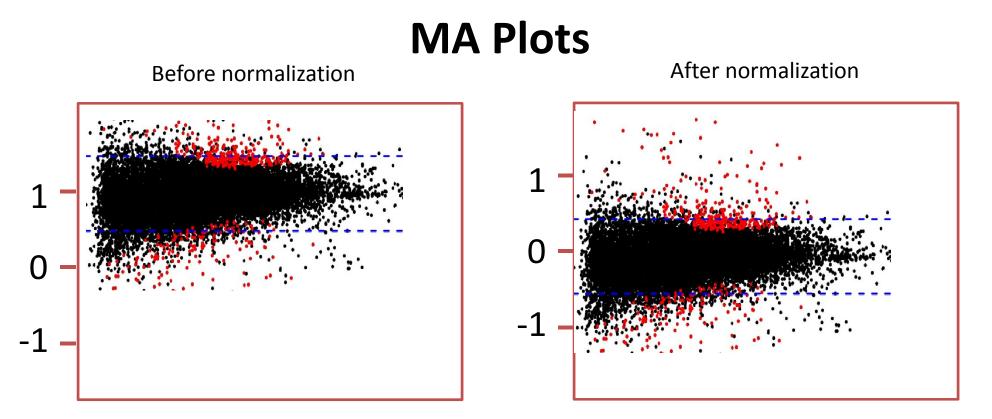
- uniformly divide each read to all mapped positions
- multi-mapped read correction (default off, can be enabled with --multi-read-correct option)

HTSeq

Count unique and multi-mapped reads separately

Complications in quantification 2. Assign reads to isoforms

Cufflinks/Cuffdiff


Use its own model to estimate isoform abundance;

HTSeq

 A set of arbitrary rules specified by mode option, including (a)skip or (b)counted towards each feature.

* Gene level read counts is more reliable than isoform level read counts

- Y axis: log ratio of expression level between two conditions;
- With the assumption that most genes are expressed equally, the log ratio should mostly be close to 0

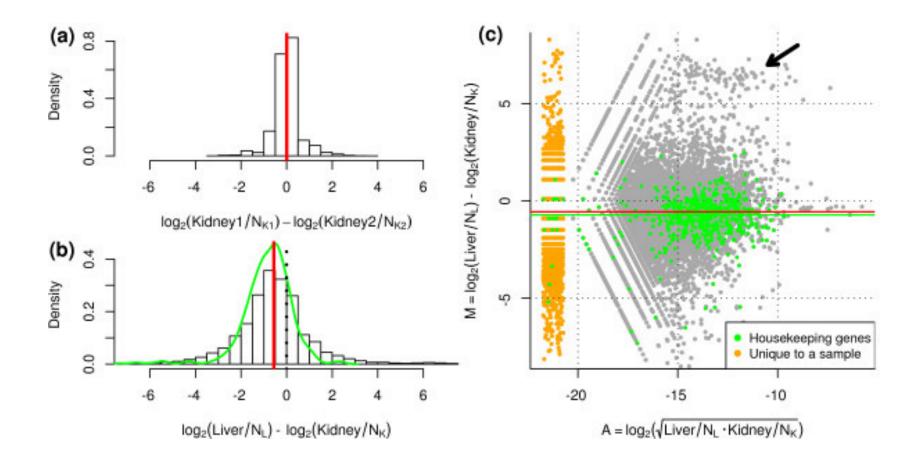
A simple normalization

FPKM (CUFFLINKS)

Fragments Per Kilobase Of Exon Per Million Fragments

Normalization factor:

-compatible-hits-norm: reads compatible with reference transcripts -total-hits-norm: all reads


CPM (EdgeR)

Count Per Million Reads

Normalization factor:

- reads compatible with reference transcripts
- Normalized with TMM

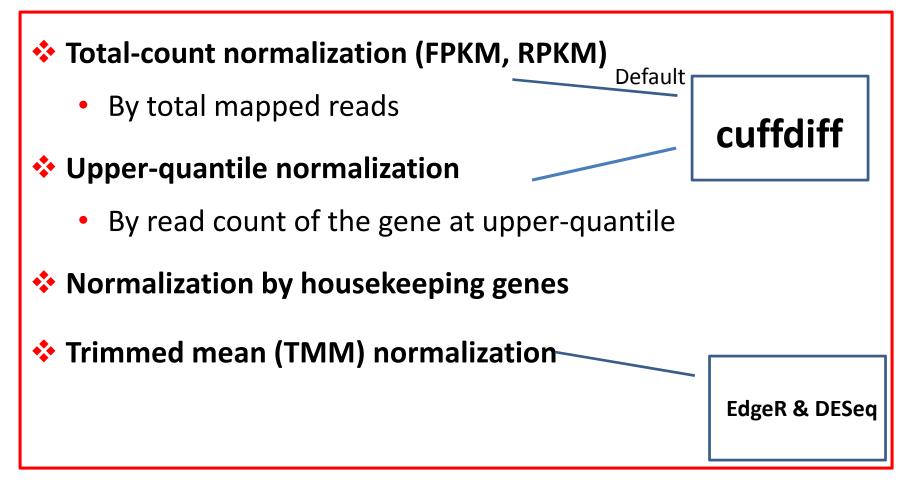
Default in EdgeR: TMM Normalization

Robinson & Oshlack 2010 Genome Biology 2010, 11:R25.

Normalization methods

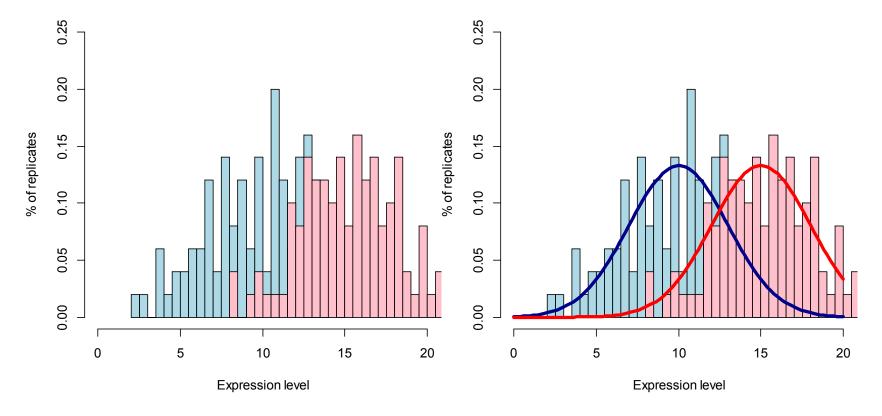
Total-count normalization

• By total mapped reads

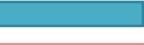

Upper-quantile normalization

• By read count of the gene at upper-quantile

Normalization by housekeeping genes

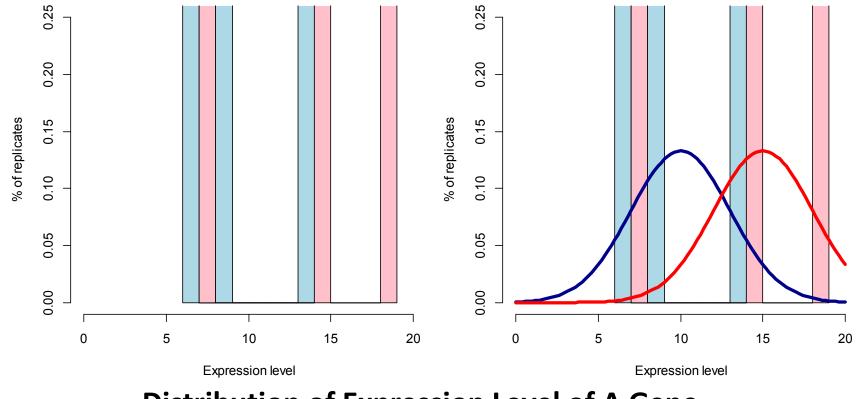

Trimmed mean (TMM) normalization

Normalization methods



3. Differentially expressed genes

If we could do 100 biological replicates,


Distribution of Expression Level of A Gene

Condition 1



The reality is, we could only do 3 replicates,

Distribution of Expression Level of A Gene

Condition 1

Statistical modeling of gene expression and test for differentially expressed genes

- 1. Estimate of variance.
- Eg. EdgeR uses a combination of
- 1) a common dispersion effect from all genes;
- 2) a gene-specific dispersion effect.

2. <u>Model the expression level with negative</u> <u>bionomial distribution.</u> DESeq and EdgeR

3. Multiple test correction

Default in EdgeR: Benjamini-Hochberg

Output from RNA-seq pipeline

For each gene:

- Read count (raw & normalized)
- Fold change (Log2 fold)
- P-value
- Q(FDR) value.

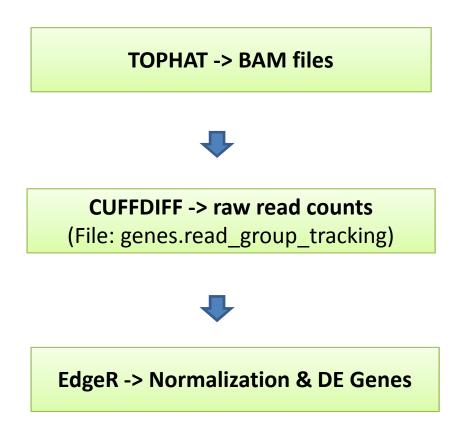
Using both fold change and FDR value to filter:

E.g. Log2(fold) >1 or <-1 & FDR < 0.05

Table 2

Comparison of methods.

Evaluation	Cuffdiff	DESeq	edgeR	limmaVoom	PoissonSeq	baySeq
Normalization and clustering		A	l methods pe	rformed equally	well	
DE detection accuracy measured by AUC at increasing qRT-PCR cutoff	Decreasing	Consistent	Consistent	Decreasing	Increases up to log expression change ≤ 2.0	Consistent
Null model type I error	High number of FPs	Low number of FPs	Low number of FPs	Low Number of FPs	Low number of FPs	Low number of FPs
Signal-to-noise vs <i>P</i> value correlation for genes detected in one condition	Poor	Poor	Poor	Good	Moderate	Good
Support for multi-factored experiments	No	Yes	Yes	Yes	No	No
Support DE detection without replicated samples	Yes	Yes	Yes	No	Yes	No
Detection of differential isoforms	Yes	No	No	No	No	No
Runtime for experiments with three to five replicates on a 12 dual-core 3.33 GHz, 100 G RAM server	Hours	Minutes	Minutes	Minutes	Seconds	Hours


AUC, area under curve; DE, differential expression; FP, false positive.

Rapaport et al. Genome Biology 2013 14:R95 doi:10.1186/gb-2013-14-9-r95

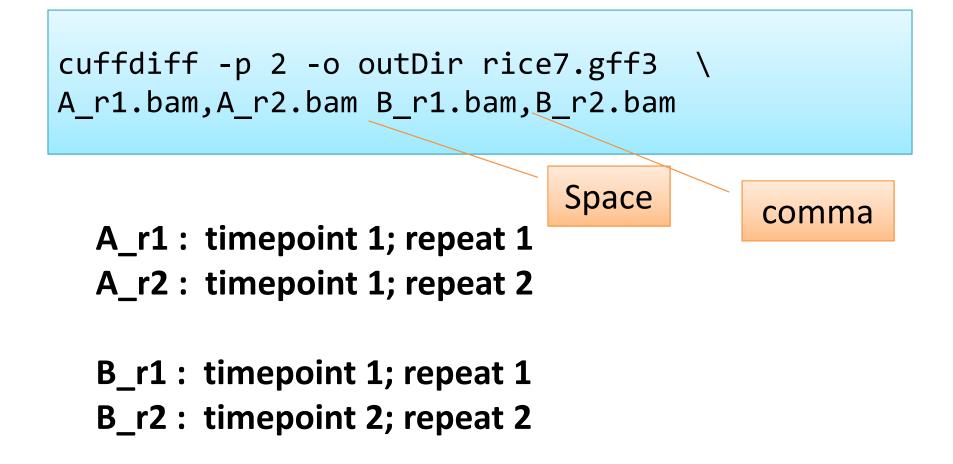
Rapaport F et al. Genome Biology, 2013 14:R95

Comparison of Methods

RNA-seq Workflow at Bioinformatics Facility

http://cbsu.tc.cornell.edu/lab/doc/rna_seq_draft_v8.pdf

Using Cuffdiff for Quantification


Cufflinks

- Input: one single BAM from TOPHAT;
- Reference guide transcript assembly;
- Output: GTF

Cuffdiff

- Input: multiple BAM files from TOPHAT;
- Quantification & DE gene detection
- Output: Read count; DE gene list

CUFFDIFF command

Connection between CUFFDIFF and EdgeR

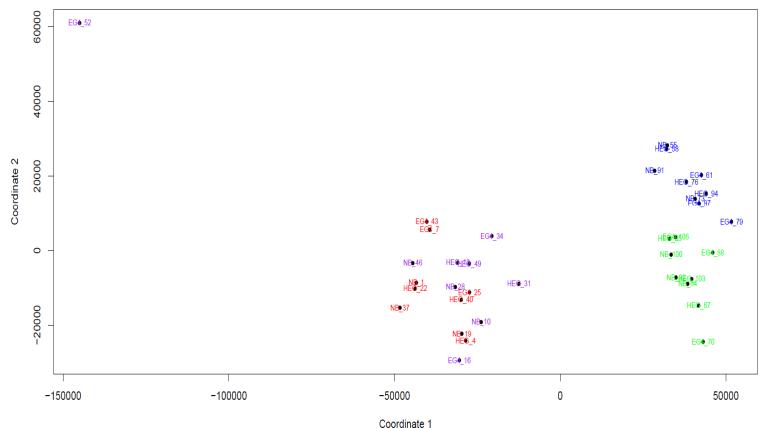
CUFFDIFF output file with raw read count: genes.read_group_tracking

				internal_s caled_fra	external_s caled_fra		effective_	
tracking_id	condition	replicate	raw_frags	gs	gs	FPKM	length	status
gene1	q1	0	16	11.3905	11.3905	0.305545	-	ОК
gene1	q1	1	12	8.08334	8.08334	0.216832	-	ОК
gene1	q2	0	15	26.084	26.084	0.699692	-	ОК
gene1	q2	1	19	21.9805	21.9805	0.589617	-	ОК
gene2	q1	0	61	43.4262	43.4262	4.50677	-	ОК
gene2	q1	1	53	35.7014	35.7014	3.69312	-	ОК
gene2	q2	0	35	60.8627	60.8627	6.35236	-	ОК
gene2	q2	1	30	34.7061	34.7061	3.59016	-	ОК

EdgeR input file:

Gene	A1	A2	B1	B2	
gene1		16	12	15	19
gene2		61	53	35	30

File conversion PERL script:


parse_cuffdiff_readgroup.pl

• The script would produce a raw read count table (edgeR_count.xls) and a FPKM table (edgeR_FPKM.xls).

• If you want to get this script, you can use FileZilla to download it, it is located at /programs/bin/perlscripts/parse_cuffdiff_readgroup.pl

Using EdgeR to make MDS plot of the samples

Metric MDS for Cold-treated vs Controlled Rice Samples

Cold-treated: hour1 in blue, hour3 in green; Controlled: hour1 in red, hour3 in purple

- Check reproducibility from replicates, remove outliers
- Check batch effects;

Use EdgeR to identify DE genes

	Treat	Time
Sample 1-3	Drug	0 hr
Sample 4-6	Drug	1 hr
Sample 7-9	Drug	2 hr

```
group <- factor(c(1,1,1,2,2,2,3,3,3))
design <- model.matrix(~0+group)
fit <- glmFit(myData, design)
lrt12 <- glmLRT(fit, contrast=c(1,-1,0)) #compare 0 vs 1h
lrt13 <- glmLRT(fit, contrast=c(1,0,-1)) #compare 0 vs 2h
lrt23 <- glmLRT(fit, contrast=c(0,1,-1)) #compare 1 vs 2h</pre>
```

Multiple-factor Analysis in EdgeR

	Treat	Time
Sample 1-3	Placebo	0 hr
Sample 4-6	Placebo	1 hr
Sample 7-9	Placebo	2 hr
Sample 10-12	Drug	0 hr
Sample 13-15	Drug	1 hr
Sample 16-18	Drug	2 hr

```
group <- factor(c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6))
design <- model.matrix(~0+group)
fit <- glmFit(mydata, design)</pre>
```

```
lrt <- glmLRT(fit, contrast=c(-1,0,1,1,0,-1))
### equivalent to (Placebo.2hr - Placbo.0hr) - (Drug.2hr-
Drug.1hr)</pre>
```

Exercise

- Using cuffdiff for quantification and identifying differentially expressed genes of two different biological conditions A and B. There are two replicates for each condition.
- Using EdgeR package to make MDS plot of the 4 libraries, and identify differentially expressed genes