
De novo transcriptome assembly using

Trinity. Exercise 2: Post-assembly

transcriptome analysis

In this exercise, we will analyze RNA-seq data from four samples from Drosophila yakuba (NCBI SRA

SRP021207). They are from two different tissues (tis1 and tis2), with two biological replications for each

tissue (rep1 and rep2). First, data from all 4 samples were combined and assembled by Trinity. In this

exercise, you will not run the assembly, instead you will focus on post-assembly data analysis. You are

provided with the assembly result file Trinity.fasta, together with 4 pairs of RNA-seq data files

(one pair from each sample). The sample labels are: tis1rep1, tis1rep2, tis2rep1 and tis2rep2.

Part 1. Abundance Estimation using RSEM.

1. Create a working directory and copy all data files required for this workshop into the working

directory. (Replace “MyUserID” with you login ID)

Note: the last command (export) is to set up a Linux environment variable TRINITY. After it is set, you

can use $TRINITY to replace the string /programs/trinityrnaseq-2.0.4. Every time you open a new

session and want to use $TRINITY, you need to execute this command “export TRINITY=…”, unless you

include this line in the .bash_profile file in your home directory.

2. Create the following shell script. You can do it on your Windows Laptop using Notepad++, on a

Mac – using TextWrangler. You can also create the file directly on your workshop Linux

workstation, for example using the nano text editor (you can put the file in your home directory

/home/MyUserID). Name the file quantify.sh. Make sure that each command is typed

on a single line, or brake lines with the “\” character at the end of each part. The explanation of

this shell script is in the note below.

mkdir /workdir/MyUserID

cd /workdir/MyUserID

cp /shared_data/Trinity_workshop_2015/part2/* ./

export TRINITY=/programs/trinityrnaseq-2.0.4

Note:

a) The first command in this script will index the transcriptome sequence file Trinity.fasta,

which is the assembled transcriptome and serves as reference for the transcript quantification.

After indexing is done, fastq files from each sample can be aligned to the reference

transcriptome.

b) Each of the following commands would run bowtie to align reads from each sample to the

reference, and run RSEM to quantify read counts for each gene/isoform.

3. If you created the script on your laptop, use FileZilla to upload it to your home directory

/home/MyUserID. If the file has been created on a Windows computer, make sure you run

dos2unix quantify.sh to convert it to a Linux format. Then launch the script as follows:

The program will be running in the background, with all screen output saved to the file

logfile (in /home/MuUserID). This step could take a few hours to finish.

4. After it is done the following files will be created. There are two files for each sample. The

*gene.results files are read count per gene. The *isoforms.results are read count

per isoforms:

$TRINITY/util/align_and_estimate_abundance.pl --transcripts Trinity.fasta --est_method RSEM \
--aln_method bowtie --trinity_mode --prep_reference

$TRINITY/util/align_and_estimate_abundance.pl --transcripts Trinity.fasta --seqType fq --aln_method bowtie
--est_method RSEM --left tis1rep1-10M_ref_1.fastq.gz --right tis1rep1-10M_ref_2.fastq.gz --SS_lib_type RF
--thread_count 4 --trinity_mode --output_prefix tis1rep1

$TRINITY/util/align_and_estimate_abundance.pl --transcripts Trinity.fasta --seqType fq --aln_method bowtie
--est_method RSEM --left tis1rep2-10M_ref_1.fastq.gz --right tis1rep2-10M_ref_2.fastq.gz --SS_lib_type RF
--thread_count 4 --trinity_mode --output_prefix tis1rep2

$TRINITY/util/align_and_estimate_abundance.pl --transcripts Trinity.fasta --seqType fq --aln_method bowtie
--est_method RSEM --left tis2rep1-10M_ref_1.fastq.gz --right tis2rep1-10M_ref_2.fastq.gz --SS_lib_type RF
--thread_count 4 --trinity_mode --output_prefix tis2rep1

$TRINITY/util/align_and_estimate_abundance.pl --transcripts Trinity.fasta --seqType fq --aln_method bowtie
--est_method RSEM --left tis2rep2-10M_ref_1.fastq.gz --right tis2rep2-10M_ref_2.fastq.gz --SS_lib_type RF
--thread_count 4 --trinity_mode --output_prefix tis2rep2

cd /workdir/MyUserID

nohup sh /home/MyUserID/quantify.sh >& logfile &

tis1rep1.genes.results
tis1rep2.genes.results
tis2rep1.genes.results
tis2rep2.genes.results

tis1rep1. isoforms.results
tis1rep2. isoforms.results
tis2rep1. isoforms.results
tis2rep2. isoforms.results

Part 2. Identify differentially expressed genes between the two tissues.

1. Combine read count from all four samples into a matrix, and normalize the read count using the

TMM method. This command will take in RSEM output files from each sample, and combine

them into a single matrix file. You can run the following command directly, or, as done

previously, prepare and run a shell script containing this command.

Note: This step can be performed at either the gene level or isoform level. For this exercise, we

do all the analysis at gene level, so we will use the RSEM output files *gene.results. After

this step, two matrix files will be created: mystudy.counts.matrix and

mystudy.TMM.fpkm.matrix. In both files, each column represents a sample, and each row

represents a gene, the values are either the raw read counts or normalized FPKM values. The

“counts” file will be used for differentially expressed gene identification, and the “fpkm” file will

be used for clustering analysis. By default, the fpkm file is normalized with TMM method.

2. Identify differentially expressed genes. We will need a text file describing the samples. This file

should have two columns separated with <Tab>. The first column corresponds to your

designated biological conditions, in this case, the two different tissues (tis1 and tis2). The second

column contains the sample names, corresponding to those listed in the header line in the

matrix file you created in the last step.

You can create this file either by Excel (convenient for larger datasets; must be saved as a Tab

delimited text file) or simply a text editor. For the purpose of the exercise, the file has already

been created and is included among the exercise data files under the name mysamples.

To identify differentially expressed genes with edgeR, run the following command:

As in previous steps, you may find it convenient to create a shell script containing this command

and run this script.

$TRINITY/util/abundance_estimates_to_matrix.pl \
--est_method RSEM tis1rep1.genes.results tis1rep2.genes.results \
tis2rep1.genes.results tis2rep2.genes.results --out_prefix mystudy

$TRINITY/Analysis/DifferentialExpression/run_DE_analysis.pl \
--matrix mystudy.counts.matrix \
--method edgeR \
--samples_file mysamples \
--min_rowSum_counts 10 \
--output edgeR_results

tis1 tis1rep1

tis1 tis1rep2

tis2 tis2rep1

tis2 tis2rep2

Note:

The tool run_DE_analysis.pl is a PERL script that calls Bioconductor package edgeR. One

parameter required by this tool is min_rowSum_counts. In this example we set it to 10, which would

remove genes with read counts less than 10 (read counts summed from all 4 samples). The output files

are in the directory edgeR_results. Using a text editor, open he file

mystudy.counts.matrix.tis1_vs_tis2.edgeR.DE_results (you can also download it to

your laptop and open it in Excel). It provides several values for each gene. 1) FDR to indicate whether a

gene is differentially expressed or not; 2) logFC is the log2 transformed fold change between the two

tissues; 3) logCPM is the log2 transformed normalized read count of average of the samples. We

normally filter this list to FDR <0.05 or below. To be more conservative, you could also use more

stringent FDR cutoff (e.g. <0.001), and only keep genes with high logFC (e.g. <-2 and >2) and/or high

logCPM (e.g. >1). In the edgeR_results directory there is also a “volcano plot” to visualize the

distribution of the DE genes.

Part 3. Clustering analysis

The following script will do hierarchical clustering and k-means clustering for samples and genes. This

analysis needs to be performed in the edgeR_results directory generated in Part 2. The clustering

will be performed only on differentially expressed genes, with FDR and logFC cutoff defined by –P and -C

parameters (as before, you may prefer to include the two $TRINITY commands in a script):

In this example, we set K=6 for k-means analysis. The genes will be separated into 6 groups based on

expression pattern, with expression patterns of each group shown in a PDF file. There are two pre-

filtered files produced: *DE_results.P1e-3_C2.tis1-UP.subset and *DE_results.P1e-

3_C2.tis2-UP.subset, with differentially expressed genes (FDR cutoff 0.001, logFC cutoff 2 and -

2).

cd edgeR_results

$TRINITY/Analysis/DifferentialExpression/analyze_diff_expr.pl \

--matrix ../mystudy.TMM.fpkm.matrix --samples ../mysamples -P 1e-3 -C 2 \
--output cluster_results

$TRINITY/Analysis/DifferentialExpression/define_clusters_by_cutting_tree.pl \
-K 6 -R cluster_results.matrix.RData

Part 4. Function annotation

As the function annotation step is computationally expensive (100k transcripts could take about two to

three days on a BioHPC lab general computer), we are not going to run it for this exercise. Instead, you

are provided with output files from function annotation pipeline: go_annotations.txt and

trinotate_annotation_report.xls.

As you will need to perform this step when doing your own projects, here is the instruction of running

function annotation.

Trinity authors recommend to use Trinotate (http://trinotate.github.io/) to do function annotation on

the assembled transcripts. The step-by-step guidance of running Trinotate on BioHPC lab computers is

provided at our web site: https://cbsu.tc.cornell.edu/lab/userguide.aspx?a=software&i=143#c .

If your Trinity.fasta file has too many sequences, Trinotate could take very long time to finish.

One option is to filter the Trinity.fasta file before running Trinotate. For example, you could

remove all isoforms that are extremely low expressed. Trinity provides a tool

filter_fasta_by_rsem_values.pl to do this. You can filter by TPM, FPKM, or IsoPct (where

'TPM' stands for Transcripts Per Million, 'FPKM' stands for Fragments Per Kilobase of transcript per

Million mapped reads, and 'IsoPct' stands for Isoform PerCenTage - the percentage of this transcript's

abundance over its parent gene's abundance). In this example, all isoforms that have FPKM<5, TPM<10,

or IsoPct<5% are removed (any one criteria matched in any one of the samples):

Alternatively, BLAST2GO is another commonly used tool for function annotation and enrichment test.

Here is the instruction of running BLAST2GO for function annotation:

http://cbsu.tc.cornell.edu/lab/doc/instruction_blast2go.htm . BLAST2GO provides its own enrichment

test tool. You can read the documentation at the BLAST2GO web site, or use our RNA-seq workshop

handout: http://cbsu.tc.cornell.edu/lab/doc/RNA-Seq-2015-02-exercise3.pdf

$TRINITY/util/filter_fasta_by_rsem_values.pl \

--rsem_output=tis1rep1.isoforms.results,tis2rep1.isoforms.results,\

tis1rep2.isoforms.results,tis2rep2.isoforms.results \

--fasta=Trinity.fasta --output=Trinity.filtered.fasta --isopct_cutoff=5 \

--fpkm_cutoff=10 --tpm_cutoff=10

Part 5. Gene Ontology Enrichment analysis

Trinity provides a tool (script run_GOseq.pl) to do enrichment analysis. This tool uses the

Bioconductor library goseq for the actual analysis. The tool requires the GO annotation file, list of DE

genes for testing. It also requires length of all genes to correct RNA-seq bias due to gene length. The

output is a spreadsheet named *GOseq.enriched, which list the GO categories that are enriched in

your DE gene set.

You can also perform this test on gene list generated from K-means clustering analysis.

To do this analysis, we need to prepare the input files. For the DE gene list you can simply use the pre-

filtered DE gene list (file

mystudy.counts.matrix.tis1_vs_tis2.edgeR.DE_results.P1e-3_C2.tis1-

UP.subset) in the edgeR_results directory. The GO annotation file is from the Trinotate, the

go_annotations.txt file provided with the exercise data files. We can generate the gene length

using one of the RSEM output *.genes.results files.

Note:

The ln -s commands create symbolic links to all the files that we need for this step. Symbolic links

(equivalents of “shortcuts” on Windows) provide a way to traet a file as local to the current directory

without having to copy or move the file over from its original location.

The cat…| cut command takes columns 1 and 3 from file tis2rep1.genes.results and writes

them into a new file named genes.lengths.txt.

The last command, run_GOseq.pl, performs the enrichment analysis.

cd /workdir/MyUserID

mkdir enrichment

cd enrichment

ln -s ../edgeR_results/mystudy.counts.matrix.tis1_vs_tis2.edgeR.DE_results.P1e-3_C2.tis1-UP.subset .

ln -s ../tis1rep1.genes.results .

ln -s ../go_annotations.txt .

cat tis1rep1.genes.results | cut -f 1,3 > genes.lengths.txt

$TRINITY/Analysis/DifferentialExpression/run_GOseq.pl \

--genes_single_factor mystudy.counts.matrix.tis1_vs_tis2.edgeR.DE_results.P1e-3_C2.tis1-UP.subset \

--GO_assignments go_annotations.txt \

--lengths genes.lengths.txt

Part 6. Evaluate assembled transcript by comparing with known proteins

The Trinity package provides a tool analyze_blastPlus_topHit_coverage.pl to evaluate the

assembled transcripts by comparing them with known proteins. In this example, we will compare the

assembly with the annotated Drosophila melanogaster proteins. A fasta file of all melanogaster proteins

(Drosophila_melanogaster.BDGP5.pep.all.fa) is included among the exercise data files. If

there is no closely related species, you can also use the Uniprot sequences for evaluation.

(ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot

.fasta.gz)

Create and run the following shell script:

The three commands executed by the script are:

1. makeblastdb: create a blast database from the D. melanogaster protein sequences;

2. blastx: run blastx against the D.melanogaster protein database;

3. analyze_blastPlus_topHit_coverage.pl: summarize the blast results, and check the

how many full length proteins are covered in the assembly.

The output is the file blastx.outfmt6.hist. The interpretation of this file can be found at

http://trinityrnaseq.github.io/analysis/full_length_transcript_analysis.html .

--

The Trinity web site (http://trinityrnaseq.github.io/#Downstream_analyses) provides detailed

documentations for the tools we use in this workshop.

makeblastdb -in Drosophila_melanogaster.BDGP5.pep.all.fa -dbtype prot

blastx -query Trinity.fasta \
-db Drosophila_melanogaster.BDGP5.pep.all.fa \
-out blastx.outfmt6 -evalue 1e-20 -num_threads 4 \
-max_target_seqs 1 -outfmt 6

$TRINITY/util/analyze_blastPlus_topHit_coverage.pl \
blastx.outfmt6 Trinity.fasta Drosophila_melanogaster.BDGP5.pep.all.fa

