
Preparation of alignments for variant calling with GATK: exercise instructions for BioHPC Lab computers

Workshop contact
bukowski@cornell.edu
Data used in the exercise
We will use D. melanogaster WGS paired-end Illumina data with NCBI accessions SRR1663608,
SRR1663609, SRR1663610, SRR1663611, corresponding to samples ZW155, ZW177, ZW184, and ZW185
respectively. To speed up the calculations, the data, originally at about 10 million read pairs per sample,
has been down-sampled by 50%.
The exercise consists of several steps leading from Illumina reads to alignments ready for variant calling,
as specified in GATK Best Practices. To call variants in all four samples, all these preparatory steps need
to be performed for each of the four FASTQ file pairs. On a multi-CPU machine with large memory, such
runs could be launched in parallel (for example, by manually submitting a given step in the background,
each time for different sample). For the purpose of the exercise, please run the whole pipeline for at
least one sample of your choice.
Log in to your workshop machine
The machine allocations are listed on the workshop website:
https://cbsu.tc.cornell.edu/ww/machines.aspx?i=90.
Details of the login procedure using ssh or VNC clients are available in the document
https://cbsu.tc.cornell.edu/lab/doc/Remote_access.pdf.
Use your ssh client with BioHPC Lab credentials to open an ssh session. If you wish, you can open
multiple sessions to have access to multiple terminal windows (useful for program monitoring).
Alternatively, use the VNC client to open a VNC graphical session (you will need to first start the VNC
server on the machine from “My Reservations” page reachable from https://cbsu.tc.cornell.edu after
logging in to the website. To close the VNC connection, click on the “X” in top-right corner of the VNC
window (but DO NOT log out!). This will ensure that your session (all windows, programs, etc.) will keep
running so that you can come back to it by logging in again.
General tips
Examine all the provided shell scripts (*.sh), for example, opening them in a text editor (such as nano
or gedit). Read explanatory comments. Notice the use of environment variables to simplify and
generalize scripts. For example, following the definition of a variable ACC

ACC=SRR1663609
any time $ACC or ${ACC} appears in the script, it will be interpreted as SRR1663609. Note the
technique of breaking long lines into smaller pieces terminated with the “\” character. For bash this is
still a long line, but easier to read for us.
Monitor the progress of your activities using the top command, preferably run in a separate window:

top –u <yourID>
This will show dynamically updated list of your processes, with the most active ones on top. Since both
the GATK and PICARD tools are written in Java, the process you will see most will be Java virtual machine
called java. In the alignment stage, the process to look for will be the BWA aligner called bwa. The
absence of any active processes (consuming CPU time) on your top list will indicate completion (or
crash) of any scripts you were running. Pay attention to memory usage (%MEM column) of different
runs.
Peek into the log files. Each time a script is run, the screen output from all commands is saved into a log
file (say, script.log). Although the messages written to that file may sound cryptic at times, they
generally allow the user to figure out which stage of the calculation is running at the moment. It also
contains useful timing information (start and end dates of individual stages, elapsed time, ETA time). To
look into the log file, you can use any of the following commands
more script.log (page through the file from the beginning)
tail -100 script.log (display the last 100 lines of the file)
tail -f script.log (continuously display incoming lines)
Of course, you can also look at the whole file by opening it in a text editor. Upon exit, discard any
changes you may have inadvertently made.
Look into the working directory (/workdir/<yourID>). As the run progresses, various intermediate
files are being produced. Executing ls –al once in a while will allow you to see those files and how they
increase in size.
If you can’t see the expected output file even though it seems that the script has ended, it usually
means that something went wrong. Examine the screen log file (e.g., open it in text editor) looking for
error messages.
You can disconnect. If a step takes longer than you are willing to wait, you can disconnect from your
VNC session (click on the cross in top right corner of the VNC window, but do not “Log Out”!). All your
programs and windows will continue running and you can examine the results when you reconnect at a
later time. Also, if you are working via ssh client (rather than VNC), you can safely log out of your ssh
session as long as the script you are running was submitted in the background through nohup (as
recommended throughout this exercise). The script will still be running (or will have finished) next time
you log in to the machine.

Fetch input files and scripts to your local scratch directory
If not yet done, create your subdirectory in the scratch file system /workdir. In the following, we will
assume the user ID <yourID> – please replace it with your own user ID.

cd /workdir
mkdir <yourID>
cd <yourID>
mkdir tmp

(The last line will create a temporary directory where Java will be instructed to store its scratch files.)
Copy the exercise files from the shared location to your scratch directory (it is essential that all
calculations take place here):

cp –RL /shared_data/Variants_workshop_2017/* .
When the copy operation completes, verify by listing the content of the current directory with the
command ls -al. You should see read files:
SRR1663608_thinned_1.fastq.gz
SRR1663608_thinned_2.fastq.gz
SRR1663609_thinned_1.fastq.gz
SRR1663609_thinned_2.fastq.gz
SRR1663610_thinned_1.fastq.gz
SRR1663610_thinned_2.fastq.gz
SRR1663611_thinned_1.fastq.gz
SRR1663611_thinned_2.fastq.gz

Check the file sizes – they should be around 410-430 MB each. Along with the read files, several shell
scripts *.sh are provided, corresponding to various stages of the pipeline. The subdirectory genome
contains a FASTA file genome.fa with the D. melanogaster reference genome. The files *.vcf
contain information about known variant sites – we will use them in the base quality recalibration stage.
Check the sequencing quality (optional)
This step summarizes the sequencing quality of the data. It is recommended to run this step before
starting the assembly – it may help set the read trimming parameters for Trinity run.

cd /workdir/<yourID>
mkdir qcreport
fastqc -o qcreport *.fastq.gz

 -o qcreport : specify the output directory (./qcreport) where the QC reports will be

stored, on directory per fastq file.
 All the fastq files should be specified, separated by space “ “. The wildcard * also does the job.
 After it is done, you can use any sftp client (e.g., FileZilla) to copy the qcreport directory to

you laptop computer, and open the fastqc_report.html file in each subdirectory with a
web browser. If you are working in graphical environment (i.e., via VNC), you can launch the
Firefox browser directly on your Linux workstation and navigate to fastqc_report.html
files.

Prepare reference genome
The file genome.fa in subdirectory genome is the reference we will be aligning the reads to. Before
starting the pipeline, the genome needs to be indexed for the BWA aligner. Also, length information for
all chromosomes needs to be summarized.
All this can be done by running the shell script prepare_genome.sh. Run the script as follows:

nohup ./prepare_genome.sh >& prepare_genome.log &
The script will run in the background and should take a few minutes to complete (use top –u
<yourID> in a separate window to monitor your processes). After it completes, list the content of
subdirectory genome. The files genome.fa.fai and genome.fa.dict are simple text files
summarizing chromosome sizes and starting byte positions in the original FASTA file. The other files
constitute the BWA index.

Align reads to reference
The script aln_bwa.sh will start the bwa aligner for accession SRR1663609 (sample ZW155). Look
at the script (e.g., with the nano editor). In particular, note the definition of read group in bwa
command line (bwa will insert it into the alignment file it generates). Note also that the raw output from
the bwa mem command (normally written to standard output STDOUT in human-readable SAM format)
is piped (using the "|" syntax) into another command, samtools view -Sb, which converts it right
away into a compressed binary file in BAM format, equivalent to SAM, but several times smaller. Thanks
to this piping mechanism, the large, intermediate output file from bwa mem does not need to be
written to disk.
In our exercise, each sample is sequenced once on one Illumina lane.
Start the script (in /workdir/<yourID>):

nohup ./bwa_aln.sh >& bwa_aln_SRR1663609.log &

The program will run in the background, saving any screen output to the log file we decided to name
bwa_aln_SRR1663609.log. Approximate run time: 10 minutes.
The result will be the file SRR1663609.bam, describing the alignments in BAM format. This file is a
binary file. Briefly examine its contents using the command samtools which reads this binary file and
converts it to human-readable text format, printing it to the screen:

samtools view -h SRR1663609.bam | less
Piping the output from samtools through less allows us to view this output page by page; to exit the
paginator - press q. The option -h make samtools print the entire content of the BAM file, including
the header.
 If you wish, repeat the run with different sample(s) (it will come in handy in the next session, when we
will be calling variants from multiple samples). To do this, edit bwa_aln.sh, and change the SRR

accession and the corresponding sample name where needed (don’t forget the read group declaration!),
and re-run the script. If you wish, you can include all four alignment commands in the script, to be
executed one by one.
Sort and mark duplicates
The BAM file obtained previously will now be sorted over genomic coordinate and any duplicate
fragments will then be marked to be ignored in downstream analysis. To do this, launch the script
sort_dedup_index.sh:
nohup ./sort_dedup_index.sh SRR1663609 >& sort_dedup_index_SRR1663609.log &
The script takes one argument (the SRR accession). To re-run it for a different accession, just change the
argument in the command above – there is no need to change anything in the script itself. However,
edit the script and examine the syntax of the commands and any informative comments it may contain.
The run for one sample will take approximately 10 minutes. Examine the log file for any errors and
detailed timing information. It is actually convenient to monitor the log file during the run (tail –f
sort_dedup_index_SRR1663609.log).
The result of the run will be the file SRR1663609.sorted.dedup.bam, accompanied by the index
file SRR1663609.sorted.dedup.bai.
Check the alignment stats summary of the obtained file, running the samtools command
samtools flagstat SRR1663609.sorted.dedup.bam
Can you tell how many reads have been mapped? How many have been marked as duplicate?
Local realignment
To identify regions containing indels and regions likely to harbor a hidden indel, and then collectively
realign all reads mapped to these regions, use the script realign.sh. Looking at this script, you will notice
the last command – an invocation of PICARD’s FixMateInformation program – which re-syncs
mate pair coordinates that may have changed as a result of the realignment. The command (entered, as
usual, from /workdir/<yourID>)

nohup ./realign.sh SRR1663609 >& realign_SRR1663609.log &
will launch the realignment process for sample SRR1663609, producing the file
SRR1663609.sorted.dedup.realigned.fixmate.bam (with the corresponding index). An
intermediate file SRR1663609.sorted.dedup.realigned.bam (containing realigned reads with incorrect
mate pair information) may be discarded. Estimated run time: 20 minutes.

Base quality score recalibration
The script recalibrate.sh first collects the mismatch data from alignments and then uses this
information to re-calibrate base quality scores of reads in the BAM file obtained in the previous step. It
is important that the mismatch data is collected from a BAM file in which reads have been locally re-
aligned around indels, since these alignments are less likely to contain false mismatches. Any well-

known variant positions should be excluded from the mismatch count. We have such known variant
position sets for the four chromosomes: chr2L, chr2R, chr3L, and chr3R (in files chr*.vcf provided
with the exercise data). These are specified in the BaseRecalibrator command (using –
knownSites option). BaseRecalibrator is only using alignments from these four chromosomes
(as specified by the –L options). This way, any unknown but true variant sites of other chromosomes
will not skew the recalibration database. The database is then applied in the second step to the full
alignment file.
To launch the script for sample SRR1663609, execute
nohup ./recalibrate.sh SRR1663609 >& recalibrate_SRR1663609.log &
The output consists of two files: the recalibration table
SRR1663609.sorted.dedup.realigned.fixmate.recal_data.table and the
recalibrated BAM file SRR1663609.sorted.dedup.realigned.fixmate.recal.bam.
Estimated run time: 35 minutes.

Create “before/after” base quality plots (optional)
For illustration purposes, the recalibration procedure may be repeated using the already recalibrated file
(here: SRR1663609.sorted.dedup.realigned.fixmate.recal.bam) as input. The new
recalibration table obtained in this way is expected to show little difference between the new empirical
base quality scores and the old (already recalibrated) ones. This new recalibration table can be used
along with the old one (obtained in previous step) to illustrate the effect of recalibration on base scores
within different covariate bins. Running the script recal_plot.sh
nohup ./recal_plot.sh SRR1663609 >& recal_plot_SRR1663609.log &
will result in a new recalibration table
SRR1663609.sorted.dedup.realigned.fixmate.postrecal_data.table and the
“before/after” plot in pfd format:
SRR1663609.sorted.dedup.realigned.fixmate.recal_before_after.pdf.
Estimated run time: 15 minutes.

Visualize the alignments using IGV
You need to be connected to the machine with VNC. In a terminal window, enter

igv
The IGV window will appear in a few moments. In the navigation bar, go to Genomes and select Load
Genome from File. Browse to /workdir/<yourID>/genome and select the file genome.fa. I the
chromosome selection dropdown (which initially says All) you should see D melanogaster chromosome
names. Now load one of the BAM files created during the exercise: go to File Load from File, browse

to /workdir/<yourID>, and select one of the BAM files. Select one of the chromosomes and zoom
in (using the slider in top right corner) enough to see alignments.
IGV has plenty of display options, some available in View menu tag, some showing up upon a right click
within the display window. Try to familiarize yourself with the program’s capabilities. For example, try
different read coloring schemes based on various properties of aligned pairs (right click within window,
then select Color alignments by…). Notice that left-clicking on (or just hovering over – it is configurable)
a read will display detailed information about it, as found in the BAM file. You may find it helpful to use
IGV’s Help link to learn more.
 You can load one or more additional BAM files if you wish. It is especially instructive to compare BAM
files before and after local realignment step (SRR1663609.sorted.dedup.bam and
SRR1663609.sorted.dedup.realigned.fixmate.bam, respectively). Can you identify reads
that have been re-aligned? Hint: such reads may be rare and hard to spot. Fortunately, the realigner
leaves its “mark” in the resulting BAM file by introducing a tag OC (for “old CIGAR”) into the BAM record
of each read whose alignment was altered. To look for such reads, simply run the command
samtools view SRR1663609.sorted.dedup.realigned.fixmate.bam | grep “OC:Z” | more
(it is important to pipe the lengthy output through the more pager tool to prevent it from scrolling too
fast). Write down the chromosomes and starting alignment positions of a few such reads, and navigate
to those coordinates in IGV.

