
Variant calling with GATK: exercise
instructions for BioHPC Lab computers

Introduction
In this exercise we will practice calling and processing variants from alignments of D melanogaster data

(Grenier JK, Clark AG, et al. (2015) Global Diversity Lines - A five-continent reference panel of sequenced

Drosophila melanogaster strains. G3 (Bethesda). 2015 Feb 11. pii: g3.114.015883) prepared during the

previous session of the workshop. Initial step of the procedure is time-consuming (at least 2 hours of

compute time). If you wish, you can skip this step and use the pre-computed intermediate files instead

(see step instructions for details).

Log in to your workshop machine
The machine allocations are listed on the workshop website:

https://cbsu.tc.cornell.edu/ww/machines.aspx?i=674.

Details of the login procedure using ssh or VNC clients are available in the document

https://cbsu.tc.cornell.edu/lab/doc/Remote_access.pdf.

Use your ssh client with BioHPC Lab credentials to open an ssh session. If you wish, you can open

multiple sessions to have access to multiple terminal windows (useful for program monitoring).

Alternatively, use the VNC client to open a VNC graphical session (you will need to first start the VNC

server on the machine from “My Reservations” page reachable from https://cbsu.tc.cornell.edu after

logging in to the website. To close the VNC connection, click on the “X” in top-right corner of the VNC

window (but DO NOT log out!). This will ensure that your session (all windows, programs, etc.) will keep

running so that you can come back to it by logging in again.

General tips
Examine all the provided shell scripts (*.sh), for example, opening them in a text editor (such as nano

or gedit). Read explanatory comments. Notice the use of environment variables to simplify and

generalize scripts. For example, following the definition of a variable ACC

ACC=SRR1663609

any time $ACC or ${ACC} appears in the script, it will be interpreted as SRR1663609. Note the

technique of breaking long lines into smaller pieces terminated with the “\” character. For bash this is

still a long line, but easier to read for us.

Monitor the progress of your activities using the top command, preferably run in a separate window:

top –u <yourID>

https://cbsu.tc.cornell.edu/lab/doc/Remote_access.pdf
https://cbsu.tc.cornell.edu/

This will show dynamically updated list of your processes, with the most active ones on top. Since both

the GATK and PICARD tools are written in Java, the process you will see most will be Java virtual machine

called java. In the alignment stage, the process to look for will be the BWA aligner called bwa. The

absence of any active processes (consuming CPU time) on your top list will indicate completion (or

crash) of any scripts you were running. Pay attention to memory usage (%MEM column) of different

runs.

Peek into the log files. Each time a script is run, the screen output from all commands is saved into a log

file (say, script.log). Although the messages written to that file may sound cryptic at times, they

generally allow the user to figure out which stage of the calculation is running at the moment. It also

contains useful timing information (start and end dates of individual stages, elapsed time, ETA time). To

look into the log file, you can use any of the following commands

more script.log (page through the file from the beginning)

tail -100 script.log (display the last 100 lines of the file)

tail -f script.log (continuously display incoming lines)

Of course, you can also look at the whole file by opening it in a text editor. Upon exit, discard any

changes you may have inadvertently made.

Look into the working directory (/workdir<yourID>). As the run progresses, various intermediate

files are being produced. Executing ls –al once in a while will allow you to see those files and how they

increase in size.

If you can’t see the expected output file even though it seems that the script has ended, it usually

means that something went wrong. Examine the screen log file (e.g., open it in text editor) looking for

error messages.

You can disconnect. If a step takes longer than you are willing to wait, you can disconnect from your

VNC session (click on the cross in top right corner of the VNC window, but do not “Log Out”!). All your

programs and windows will continue running and you can examine the results when you reconnect at a

later time. Also, if you are working via ssh client (rather than VNC), you can safely log out of your ssh

session as long as the script you are running was submitted in the background through nohup (as

recommended throughout this exercise). The script will still be running (or will have finished) next time

you log in to the machine.

Scripts and input data
First, copy the shell scripts to be used in the exercise to your local scratch directory

/workdir/<yourID> (you used this directory in previous exercise, so it should already be there):

cd /workdir/<yourID>

cp /shared_data/Variants_workshop_2016/part2/*.sh .

Also, make sure that the directory exists (if not – create it) – the scripts ask java to store its scratch files

there. After the previous exercise, you should also have a directory /workdir/<yourID>/genome

containing reference genome sequence and index files.

In previous exercise, you were supposed to obtain at least one of the de-duped, re-aligned, and

recalibrated BAM files:

SRR1663608.sorted.dedup.realigned.fixmate.recal.bam

SRR1663609.sorted.dedup.realigned.fixmate.recal.bam

SRR1663610.sorted.dedup.realigned.fixmate.recal.bam

SRR1663611.sorted.dedup.realigned.fixmate.recal.bam

along with the corresponding index (*.bai) files. For this exercise, you will need all of these BAM files in

your work directory. You can fetch all of them (along with their index file *.bai) from the workshop

shared directory:

cp /shared_data/Variants_workshop_2016/part2/*.ba? /workdir/<yourID>

Run GATK HaplotypeCaller on individual samples
In this step, we will run the HaplotypeCaller on our BAM files to produce genotype likelihood

information for each sample for each locus in the genomic region of interest. Typically, this region would

be the whole genome. To save time, we will concentrate on one chromosome, chr2R (see the –L option

in the hc.sh script). To launch the calculation for one of the sample (e.g., SRR1663608), type

nohup ./hc.sh SRR1663608 >& hc_SRR1663608.log &

The screen output from the command will be written to the log file specified above. The expected result

will be the file SRR1663608.g.vcf. containing the intermediate genotyping data for this sample.

The estimated run time of this step is 1 hour, and it has to be repeated for the other 3 samples. In real

life, calculation for different samples would be run concurrently as different processes on the same

multi-core machine, or on separate machines. It is also possible to parallelize the calculation over

genomic coordinate, i.e., run separate jobs per sample per (a piece of) a chromosome (which can be

specified with the –L option of HaplotypeCaller – see hc.sh script).

For the purpose of the exercise, we would recommend that you run this step for at least one of the

samples (e.g., the one for which you prepared the BAM file in last session), and then fetch the other

(pre-computed) *.g.vcf files (and corresponding index files *.g.vcf.idx) from the shared

workshop directory, e.g.,

cp /shared_data/Variants_workshop_2016/part2/SRR1663610.g.vcf* .

and similarly for other files. If you are short of time, you can simply skip this calculation and fetch all the

ready-made *.g.vcf files. In any case, please examine the hc.sh script.

Once the *.g.vcf files are in your work directory, examine them (e.g., open in nano text editor –

possible for short test files like these) and confront with the gVCF format description at

https://www.broadinstitute.org/gatk/guide/article?id=4017.

https://www.broadinstitute.org/gatk/guide/article?id=4017

Joint variant calling with GenotypeGVCFs
The intermediate, sample-level files *.g.vcf will now be used to call variants jointly on all four

samples. The corresponding GATK command can be found in the script

joint_call_from_gVCF.sh. Run the script:

nohup ./joint_call_from_gVCF.sh >& joint_call.log &

As usual, the script will run in the background, saving all screen output to the log file. The script takes no

arguments, since all the necessary information (sample IDs) is hard-coded in the script explicitly. The

output (as specified in the GATK command line) is the file hc.chr2R.vcf, containing the raw (i.e., not

yet filtered or recalibrated) variant calls for our 4-sample “population”. Open this file in a text editor and

examine its content. Estimated run time: 5-6 minutes.

Joint variant calling using UnifiedGenotyper
UnifiedGenotyper is another GATK tool for joint variant calling. It does not perform local re-assembly of

haplotypes and operates on a site-by-site basis instead. As a result of this, it is faster than

HaplotypeCaller approach, although generally less accurate.

UnifiedGenotyper takes de-dupped, re-aligned and recalibrated BAM files as input. You will have to

have all 4 of these BAM files present in your scratch directory (copy them from the workshop shared

space, as described above).

To run the tool, simply execute the script ug.sh:

nohup ./ug.sh >& ug.log &

The resulting file, ug.chr2R.vcf, will contain a set of variants produced. Estimate run time: 10

minutes.

Joint variant calling using FreeBayes
FreeBayes is a variant-calling program by Erik Garrison et al., https://github.com/ekg/freebayes. It is

independent from GATK. Similarly to GATK’s HaplotypeCaller, FreeBayes uses haplotype-based

approach to variant detection, although implemented differently.

The input for FreeBayes consists of alignment BAM files for all samples involved. Unlike GATK, the

FreeBayes-based pipeline does not require extensive preparation of alignments, such as local re-

alignment or base score recalibration. However, since such pre-processing won’t hurt, we can use our

processed BAM files obtained in the previous session (you can copy those from the workshop shared

space, as described above). Assuming all BAM files are in place, call variants using the script fb.sh:

nohup ./fb.sh >& fb.log &

The result will be the variant file fb.chr2R.vcf. Estimated run time: 20 minutes.

Examining the resulting VCF file, notice that the parameters in the ANNOTATION field generated by

FreeBayes are generally different than those emitted by GATK callers.

https://github.com/ekg/freebayes

Filter variants with VariantFiltration
The VCF files obtained in previous steps are raw results, likely to contain a lot of false positives,

depending on the stringency options used in calling. Since the calling steps are time-consuming, it is

generally advisable to set these options to emit an inclusive set of variants, and then filter this set over

various parameters, such as those recorded in the INFO field of a VCF file. In GATK, the option

-stand_emit_conf controls the lower threshold on the quality (the QUAL field of VCF) of variants to

be output. This option should be set to some low value (e.g., 5).

Filtering of the raw set of variants can be accomplished using many different tools. In a lot of cases, one

can simply utilize standard Linux text parsing tools, like grep, awk, or sed. For example, to extract a

subset of variants with QUAL greater than, say, 60, from raw hc.chr2R.vcf we could use the

following commands:

grep ”#” hc.chr2R.vcf > hc.chr2R.qual60.vcf

grep –v ”#” hc.chr2R.vcf | awk ’{if($6>60) print}’>> hc.chr2R.qual60.vcf

The first command extracts the VCF header lines (containing “#”) into a new VCF file, while the second

command processes the non-header lines, appending them to the new file only if the sixth column

(that’s where QUAL is) is above 60.

 GATK offers a tool called VariantFiltration, which allows more complex filtering patterns. An example

script using this tool is called filter_vcf.sh. As you examine this script, you will notice that

different filtering criteria are applied to SNPs than for indels. To accomplish this, SNPs and indels are

first extracted to separate files, these files are filtered, and then the SNP and indel filtered files are

merged back into a single filtered file. To run the filtering script, enter

nohup ./filter_vcf.sh hc.chr2R >& filter_vcf.log &

(note that we are supplying the prefix of the VCF file name, i.e., *without* the .vcf extension as

argument). The filtered VCF file will be called hc.chr2R.filtered.vcf (the corresponding index

file *.vcf.idx will also be created). Other intermediate files (with separate SNPs, indels, filtered and

not, along with their indexes) will also be produced – these may be deleted.

Examine the filtered VCF file. Notice the change in the FILTER field. Instead of dot “.” (no filtering

information), this field will now contain flags PASS (variants which passed the filter) and my_snp_filter

or my_indel_filter (both these strings were defined in filtering command) – marking variants which

failed the respective filters. Note that no variant has been removed from the file. The ones that failed

filtering are just marked as such.

Estimated run time: 3 minutes.

Variant score recalibration
Variant Quality Score Recalibration (VQSR) is a procedure recommended by Broad to be used instead

of the hard (threshold-based) filtering in cases when a large, verified set of high-quality SNPs and/or

indels is available. These reliable sets of variants can be used to train a machine learning model

(Gaussian mixture model) using various parameters (mainly from the ANNOTATIONS field) as attributes.

Once the model is trained, it is used to assign another score (called VQSLOD) to each unknown variant

(this new score computed by running this variant’s ANNOTATIONS parameters through the model). The

new score is recorded as another parameter in the ANNOTATIONS field. A VCF file “recalibrated” this

way may then be filtered over VQSLOD (the higher the value, the better the variant is) rather than

through the application of often quite arbitrary hard thresholds.

The variant call error models for SNPs and indels are different, therefore VQSR is applied separately to

these two kinds of variants using different training sets. In our example, we will use the known variants

from the file chr2R.vcf (the same one we used for base score recalibration; it contains mostly SNPs)

as a training set for recalibrating hc.chr2R.vcf. The script executing the procedure, called

vqsr.sh, consists of two GATK commands. The first invokes the model training, the second applies the

model to all variants in the input VCF file and produces the VQSLOD scores. After running the script

nohup ./vqsr.sh >& vqsr.log &

you will notice several output files with a string vqsr in file names. The final output file

hc.chr2R.vqsr_snps_raw_indels.vcf will contain SNP variants with VQSLOD score appended

(and still raw indels). In the FILTER field of this file, you will notice flags like PASS or

VQSRTrancheSNP99.00to99.90. The flag PASS means that the VQSLOD score of the variant is high

enough to reproduce at most top 99% of training variants (see parameter --ts_filter_level

which sets this threshold). The flags VQSRTrancheSNP99.00to99.90 or

VQSRTrancheSNP99.90to100.00 indicate lower VQSLOD, i.e., in a higher sensitivity tranche, such

that more training variants (possibly with more false positives) would be included. The tranches are

defined at the training model stage.

Estimated run time: 5 minutes.

Basic stats and comparison of variant sets

Using Linux commands
Given a VCF file, its simplest properties may be obtained by running standard Linux text parsing tools.

For example, to get the number of variants in a file, run the following:

grep –v ”#” hc.chr2R.vcf | grep wc –l

(grep filters out the header lines and pipes its output into wc –l which counts the remaining lines and

displays the result on screen). To extract sites located between positons 10000 and 20000 on

chromosome chr2R and save them in a file, simply run

grep –v ”#” hc.chr2R.vcf | awk ’{if($1==”chr2R” && $2 >=10000 && $2

<=20000) print}’ > extracted_records

(note that in this case the chromosome condition $1==”chr2R” is not really needed, because our VCF

file only contains data for chr2R, however, it would be necessary for a more general input). To quickly

find out how many variants passed filtering, simply type

awk ’{if($7==”PASS”) print}’ uc.chr2R.filtered.vcf | wc -l

More complex analysis and operations on VCF files can be accomplished using specialized software

tools, such as those contained in GATK package and those from the vcftools package (independent from

GATK).

Using GATK’s VariantEval
GATK offers an interesting function, VariantEval, to summarize various statistics of a variant set and

compare it to another variant set obtained from the same data, but with a different method, for

example. A script var_eval.sh, based on this function, will compare any two VCF files:

./var_eval.sh hc.chr2R ug.chr2R >& var_eval.log &

will generate a file hc.chr2R.ug.chr2R.comp.gatkreport with the result of the comparison.

This file has long lines and is best viewed in Excel (after being transferred to your laptop). In particular,

the first few lines show how many variant sites are shared between the two files, how many are “new”

(i.e., absent in the comparison file), and what is the concordance rate in the shared variant set (i.e.,

what fraction of variants have the same alleles and genotypes).

Run the script for various pairs of VCF files obtained in previous steps. Are the variants from

HaplotypeCaller and UnifiedGenotyper similar to each other? How about the ones from FreeBayes?

Using vcftools
vcftools (A. Auton, A. Amrcketta, http://vcftools.sourceforge.net/) is a popular toolkit for analyzing and

manipulating VCF files. Here are some usage examples (try them on your VCF files):

Obtain basis VCF statistics (number of samples and variant sites):

vcftools --vcf hc.chr2R.vcf

Extract subset of variants (chromosome chr2R, between positions 1M and 2M) and write tem a new VCF

file

vcftools –vcf hc.chr2R.vcf --chr chr2R --from-bp 1000000 --to-bp

2000000 --recode –recode-INFO-all -c > subset.vcf

Get allele frequencies for all variants and write them to a file

vcftools --vcf hc.chr2R.vcf --freq -c > hc.chr2R.freqs

Compare two VCF files (will print out various kinds of compare info in files hc.ug.compare.*):

vcftools --vcf hc.chr2R.vcf --diff ug.chr2R.vcf --out hc.ug.compare

http://vcftools.sourceforge.net/

