
COMPUTATIONAL BIOLOGY SERVICE UNIT, 3CPG

Reference genome based sequence
variation detection

Hands-on Exercise

Robert Bukowski (bukowski@cornell.edu), Qi Sun (qisun@cornell.edu)

5/25/2011

OBJECTIVE

Given Illumina sequencing data (in FASTQ format) for four maize lines and the reference genome for

maize (in FASTA format), call variants in these lines.

Software to be used (it will be provided on your workshop machine, so no need to download):

Program Reference URL Purpose

BWA http://bio-bwa.sourceforge.net/bwa.shtml#4 Align reads to reference genome

samtools http://samtools.sourceforge.net/samtools.shtml#4 Operate on SAM and BAM files,
convert SAM to BAM, call SNPs
and INDELs on multiple samples

picard http://picard.sourceforge.net/command-line-
overview.shtml#MergeBamAlignment

Operate on SAM and BAM files,
convert SAM to BAM

GATK http://www.broadinstitute.org/gsa/wiki/index.php/B
est_Practice_Variant_Detection_with_the_GATK_v2#

Re-align reads around indels, call
SNPs and INDELSs on multiple
samples, filter variants

ANNOVAR http://www.openbioinformatics.org/annovar/ Annotate variants

IGV http://www.broadinstitute.org/igv/ Visualize alignments on reference
genome

SAMPLE DATA

As the sample data we will use Illumina sequencing reads for four maize lines (B73, Ki11, Mo17, and

CML103) from the maize Hapmap project (Gore et al. 2009, Science. 326:1115-7). The maize reference

genome used is Refgen v2.

PREREQUISITES

Basic familiarity with Linux operating system is a plus. Some general-purpose Linux and scripting tips will

be provided throughout the exercise.

You need to have an account on iPlant Atmosphere cloud. Your Atmopshere instance has to be up and

running with your EBS volume attached and mounted as /home/<your_id>/workdir, where <your_id>

stands for your Atmosphere user name (e.g., /home/rb299/workdir). You have to be connected to your

Atmosphere instance using the VNC viewer or an SSH client and have at least one terminal window open.

Please consult the document http://cbsu.tc.cornell.edu/lab/doc/wrkshp_Atmosphere.pdf to learn how

to launch, configure, and use your Atmosphere instance.

GENERAL TIPS

Initial parts of the exercise (genome indexing and read alignment) are lengthy, about 3 hours total. If

you find it convenient, after launching such a long a program (say, genome indexing) you can disconnect

http://bio-bwa.sourceforge.net/bwa.shtml#4
http://samtools.sourceforge.net/samtools.shtml#4
http://picard.sourceforge.net/command-line-overview.shtml#MergeBamAlignment
http://picard.sourceforge.net/command-line-overview.shtml#MergeBamAlignment
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2
http://www.openbioinformatics.org/annovar/
http://www.broadinstitute.org/igv/
http://cbsu.tc.cornell.edu/lab/doc/wrkshp_Atmosphere.pdf

from your Atmosphere VM and reconnect later. Your VM and your program will be working while you’re

away.

You can run different parts of the exercise at different times or on different days. Your Atmosphere VM,

once launched, will be waiting for you while you are disconnected. However, if you are not planning on

using your VM for a few days, please terminate it (remember to properly unmounts and detach your EBS

volume!) to free up the resource. When you are ready to resume the exercise, simply launch a brand

new VM and attach your EBS volume to it.

Always examine the output files generated at various stages. The log files (i.e., the screen output) and

VCF files are just text files which you can open using a text editor. On Linux, you can use nano, gedit, or

vi editors. SAM files are also text files, but they may be too large for text editors to handle (other ways

to look into these file are suggested in the text).

Examine (also with a text editor) the shell scripts provided. They are good templates which will save you

a lot of command typing if you decide to use any of the tools discussed here for your own project.

You can transfer some of the output files and script files to your own computer for future use.

When you are finished with the exercise, terminate your VM.

INITIAL STEPS

Throughout the exercise the directory /home/<your_id>/workdir must always be your current

directory, so that any files you create are written there. To change directory to

/home/<your_id>/workdir, run the following two commands:

Repeat these commands whenever in doubt what your current directory is. In what follows, the

directory /home/<your_id>/workdir will be referred to simply as workdir.

Step 1. Prepare data

In this step, you will copy the data and executables used in the exercises from the network-mounted

common directory /cbsu/CBSUworkshop to workdir. To do this, execute the following commands:

After the operations complete (which may take a few minutes), workdir should contain the following

files:

The four *.fastq files are Illumina read files for four maize lines, the maize_agp_v2.fasta file is the maize

reference genome, the chr10.intervals file specifies chromosome 10 for GATK, the gtf file contains

genome annotations for the IGV browser, and the directory zm2 contains annotation data in UCSC

format to be used in the variant annotation step of the exercise. You should also see a few other

Size [bytes] File Name

2583122424 B73_full-std.fastq

1872038652 CML103_full-std.fastq

3668943102 Mo17_full-std.fastq

1365755484 Ki11_full-std.fastq

2100151487 maize_agp_v2.fasta

1388 chr10.intervals

 zm2 (directory)

50374154 ZmB73_5a_WGS_chr.gtf

cd; cd workdir

cp /cbsu/CBSUworkshop/CBSUworkshop_bin.tgz .

tar –xzvf CBSUworkshop_bin.tgz

cp /cbsu/CBSUworkshop/CBSUworkshop_data.tgz .

tar –xzvf CBSUworkshop_data.tgz

cd

cd workdir

directories (samtools, picard, GATK, IGV_15.38, bwa, annovar, scripts) containing programs used in the

exercise. Please verify (using the ls –al command) that sizes of the files in your workdir are as listed in

the table above. If everything looks fine, you can remove the tgz archive files from workdir (with the

command rm *.tgz).

Step 2. Index reference genome

Before the reads can be aligned to the reference genome using BWA, the reference has to be indexed. In

workdir, run the following (please note that each command has to be typed in one line):

Remarks:

 Several files will be created in subdirectory index with names staring with maize_agp_v2.

 The screen output from the command will be captured in the file index.log.

 The & character at the end of the second command will make it run in the background, so that

your terminal will be available for other work.

 Verify that the program is running. Run top – you should find bwa on top of the list, consuming

close to 100% of CPU (to exit top, press Cntrl-C). Run command ps –ef | grep bwa. You should

see information about your bwa process. If you don’t – it is not running.

 You can check on the progress of the program by listing the directory index (ls –al ./index), or

peek into the log file (more index.log).

 The indexing will take about one hour.

Step 3. Align reads to reference

For each of the four *.fastq files, execute the following set of commands (please note: each command

has to be typed in one line)

mkdir index

./bwa/bwa index –p index/maize_agp_v2 -a bwtsw

maize_agp_v2.fasta >& index.log &

./bwa/bwa aln -n 2 -t 4 ./index/maize_agp_v2 Ki11_full-std.fastq

1> Ki11_full-std.sai 2 >> bwa.log &

./bwa/bwa samse ./index/maize_agp_v2 Ki11_full-std.sai

Ki11_full-std.fastq 1> Ki11_full-std.sam 2>> bwa.log &

rm Ki11_full-std.sai

Remarks:

 The first command performs the actual alignment of reads from file Ki11_full-std.fastq with up

to 2 mismatches allowed per read (-n 2).

 It will use all 4 CPU cores available on the machine (-t 4).

 The second command converts the alignment result in sai format to the SAM format. After this

conversion, the intermediate file Ki11_full-std.sai may be removed (the third command).

 The three commands above need to be repeated for each of the fastq read files (with Ki11_full-

std replaced by the appropriate file name core).

 The file bwa.log will contain the combined screen output from all commands. Expected

combined timing of alignment of all four read files is about 120 minutes.

 Note: The ‘bwa samse’ command can be launched only after the corresponding ‘bwa aln’

command finishes (otherwise, the sai file needed by ‘bwa samse’ would not be ready). Likewise,

the ‘sai’ file cannot be removed until ‘bwa samse’ is completed.

 How to check the program finished? Run top and/or ps –ef | grep bwa (see Remarks to Step 2).

As you see, running the alignment involves a lot of typing, especially if you realize that the set of three

commands above have to be repeated for each of the four samples (for each of the four fastq files).

Thus, it makes sense to invest some time into writing a shell script that could automate things

somewhat. For your convenience, we wrote such a simple script called bwa_aln.sh – you will find it in

/home/<your_id>/workdir/scripts. Please open the file bwa_aln.sh in your favorite text editor (e.g.,

nano, gedit, or vi) and examine its structure. Here are the highlights:

 The first line tells Linux to execute the script using the Bourne Shell (/bin/bash) as an interpreter.

 The sample name, e.g., ‘Ki11_full-std’, is passed as a command line argument ($1) and stored in

variable SAMPLE used in all subsequent commands. This makes it easy to re-use the script for

different samples – just supply the sample name as an argument. No changes to the script are

necessary.

 Command lines are broken (instead of being typed on a single line) – this is permissible as long

as each “piece” ends with the `\’ character (backslash). Breaking down the command lines is not

necessary - we did this for convenience only (it is just easier to look at various options).

 There is no & at the end of any command inside the script (otherwise commands would attempt

to start simultaneously, which we do not want) and no output redirection – these will be

supplied when the whole script is run (see below).

 There is timing information printed (command date) in the beginning and at the end of the

script – from this we can tell (looking into bwa.log file) how long it took to run the script.

Thus, instead of laboriously typing all three commands above, we can achieve the same effect by

invoking the script (while in workdir)

./scripts/bwa_aln.sh Ki11_full-std >>bwa.log 2>&1 &

Note the output redirection (2>&1 means that the ‘standard error’ will be written to the same place as

‘standard output’, i.e., to the baw.log file) and the & at the end means the whole script will be run in the

background, one command at a time. To repeat the calculation for a different sample, replace Ki11_full-

std with that sample’s name. You have to do it three more times.

The SAM files obtained in steps 1-3 are the starting point for SNP/INDEL calling pipelines. Here we will

illustrate two such pipelines: one based on the samtools package, and the other – using the Picard and

GATK packages.

SNP/INDEL CALLING USING SAMTOOLS

Step 1. SAM to BAM conversion

For each of the SAM files, run the following set of commands (please note: each command has to be

typed in one line):

Remarks:

 The initial BAM file Ki11_full-std_unsrt.bam produced by the first command needs to be sorted

over the genome coordinate (second command). After the sorting step, the initial (unsorted)

BAM file is no longer needed and may be removed. Finally, the sorted BAM file is indexed using

the fourth command, which produces the index file Ki11_full-std.bai.

 The four commands above need to be repeated for each of the remaining SAM files (with

Ki11_full-std replaced by the appropriate file name core).

 The files samtools.log will contain the combined screen output from all samtools commands.

 Expected combined timing for conversion of all four SAM files is about 1 hour.

 Note: For each SAM file, the four commands above need to be run one after another, i.e., you

should not launch the second command before the first one finishes, etc.

For your convenience, the commands above have been included in script which can be executed simply

as:

(please see comments about scripting in INITAIL STEPS/Step 3). To repeat the calculation for a different

sample (different SAM file), replace Ki11_full_std in the command above with that sample’s name.

Using commands ls –al *.sam and ls –al *.bam, list the SAM and BAM files you just generated in

directory workdir. Which ones are larger?

Look into a SAM file, for example, using the command more Ki11_full-std.sam (press SPACE to go to

next page or ‘q’ to quit). Identify the header lines and the actual alignment record lines. Consult the

SAM format specification at http://samtools.sourceforge.net/SAM1.pdf and identify fields in your actual

SAM file. Examine column 12 (OPT) of the SAM file and identify optional tags specific for BWA

(http://bio-bwa.sourceforge.net/bwa.shtml#4).

./samtools/samtools view -bS -o Ki11_full-std_unsrt.bam

Ki11_full-std.sam 2>>samtools.log &

./samtools/samtools sort Ki11_full-std_unsrt.bam Ki11_full-std

2>>samtools.log &

rm Ki11_full-std_unsrt.bam

./samtools/samtools index Ki11_full-std.bam 2>>samtools.log &

./scripts/Sam2Bam_samtools.sh Ki11_full-std >>samtools.log 2>&1 &

http://samtools.sourceforge.net/SAM1.pdf
http://bio-bwa.sourceforge.net/bwa.shtml#4

You can also look into a BAM file, although since the file is binary, simple Linux commands will not be

enough - you’ll need to use a samtools:

(again, use SPACE to go to next page and ‘q’ to quit). Does it look the same as the SAM file you just

examined?

You can visualize the alignments recorded in your BAM files in the context of the reference genome. For

details, please read section VISUALIZING ALIGNMENTS WITH IGV VIEWER further in this document.

Step 2. Call SNPs and INDELs

Run the following commands (please note: each command has to be typed in one line)

Remarks:

 There are actually three sub-steps in this block. ‘samtools mpileup’ is used to project the whole

depth of sequencing reads from all samples to the each nucleotide of the reference genome and

to compute likelihood of data given each possible genotype. Rather than being written to disk,

the output in bcf format is piped (see the ‘|’ character in the first command) directly to bcftools

which performs variant calling. In the second command, vcfutils.pl is used to filter the results

and write them out in VCF format (here: to file chr10_samtools.vcf).

 In the ‘samtools mpileup’ command, option –r can be used to select the region of interest. Here

we call variants only for chromosome 10 (–r chr10). To look for variants over the whole genome,

simply remove option –r chr10 from the first command (it will take significantly more time!)

 Each BAM file specified in the first command is assumed to correspond to one individual (maize

line). It is possible to use BAM files containing mixed reads for multiple individuals – the

information is then inferred from the read group (RG) tag which must then be present in each

record (for details, see ‘samtools pileup’ portion of

http://samtools.sourceforge.net/samtools.shtml#4).

 The VCF file can be open and analyzed in Excel (on your own computer).

 The whole operation should take about 5 minutes.

./samtools/samtools view –h Ki11_full-std.bam | more

./samtools/samtools mpileup -r chr10 -ugf maize_agp_v2.fasta

Ki11_full-std.bam CML103_full-std.bam B73_full-std.bam

Mo17_full-std.bam | ./samtools/bcftools view -bcvg -

1> tmp_samtools.bcf 2>> samtools.log &

./samtools/bcftools view tmp_samtools.bcf

| ./samtools/vcfutils.pl varFilter -D 100

1> chr10_samtools.vcf 2>> samtools.log &

rm tmp_samtools.bcf

http://samtools.sourceforge.net/samtools.shtml#4

For your convenience, the commands above have been included in script which can be executed simply

as:

 (please see comments about scripting in INITAIL STEPS/Step 3). If you wish to repeat the calculations,

for example, with different parameters, all you need to do is to edit the

file ./scripts/call_snp_indel_samtools.sh, change the parameters as desired, change the name of the

output file, and re-run the script. No need to type everything from scratch.

./scripts/call_snp_indel_samtools.sh >>samtools.log 2>&1 &

SNP/INDEL CALLING USING GATK AND PICARD TOOLS

Step 1. SAM to BAM conversion

This step is similar to the analogous step using samtools. GATK developers recommend that Picard

toolset is used to manipulate SAM and BAM files. For each of the SAM files, execute the following set of

commands (note: each command must be typed in one line):

Remarks:

 GATK requires the BAM files it works with to contain the read group (RG) definitions in the

header and the appropriate RG tags in each alignment record. The second command inserts this

information into the intermediate BAM file (Ki11_full-std_noRG.bam) obtained from the first

command. In our simple case, we set read group ID, sample name (SN), and library (LB) to the

same value (Ki11_full-std), although in reality, they may be different. See the SAM format

specification for more info about read group tag (http://samtools.sourceforge.net/SAM1.pdf).

 The BAM file Ki11_full-std.bam resulting from the second command is already sorted over

genomic coordinate (see SORT_ORDER option), as required by GATK.

 The intermediate file Ki11_full-std_noRG.bam can be removed when it is no longer needed.

 The four commands above need to be repeated for all four SAM files (with Ki11_full-std

replaced by the appropriate file name core).

 The file gatk.log will contain the combined screen output from all commands.

 Expected combined timing for conversion of all four SAM files is about 40 minutes.

 Note: For each SAM file, the four commands above need to be run one after another, i.e., you

should not launch the second command before the first one finishes, etc.

For your convenience, the commands above have been included in script which can be executed simply

as:

java -jar ./picard/SamFormatConverter.jar INPUT=Ki11_full-std.sam

OUTPUT=Ki11_full-std_noRG.bam >> gatk.log 2>&1 &

java –jar ./picard/AddOrReplaceReadGroups.jar

INPUT=Ki11_full-std_noRG.bam OUTPUT=Ki11_full-std.bam

SORT_ORDER=coordinate RGID=Ki11_full-std

RGLB=Ki11_full-std RGPL=solexa RGSM= Ki11_full-std

RGPU=none >> gatk.log 2>&1 &

java -jar ./picard/BuildBamIndex.jar

INPUT=Ki11_full-std.bam >>gatk.log 2>&1 &

rm Ki11_full-std_noRG.bam

./scripts/Sam2Bam_GATK.sh Ki11_full-std >>gatk.log 2>&1 &

http://samtools.sourceforge.net/SAM1.pdf

(please see comments about scripting in INITAIL STEPS/Step 3). To repeat the calculation for a different

sample (different SAM file), replace Ki11_full_std in the command above with that sample’s name.

Using commands ls –al *.sam and ls –al *.bam, list the SAM and BAM files you just generated in

directory /workdir. Which ones are larger?

Look into a SAM file, for example, using the command more Ki11_full-std.sam (press SAPCE to go to

next page or ‘q’ to quit). Identify the header lines and the actual alignment record lines. Consult the

SAM format specification at http://samtools.sourceforge.net/SAM1.pdf and compare with your actual

file.

You can also look into a BAM file, although since the file is binary, you’ll need to use a samtools rather

than just Linux commands:

(again, use SPACE to go to next page and ‘q’ to quit). Does it look the same as the SAM file you just

examined?

You can visualize the alignments recorded in your BAM files in the context of the reference genome. For

details, please read section VISUALIZING ALIGNMENTS WITH IGV VIEWER of this document.

Step 2. Realignment around indels

For each of the BAM files obtained in Step 1, perform re-alignment around indels using the following

sequence of commands from the GATK and Picard packages (note: each command must be typed in a

single line):

./samtools/samtools view –h Ki11_full-std.bam | more

java -Xmx2g -jar ./GATK/GenomeAnalysisTK.jar

–T RealignerTargetCreator –I Ki11_full-std.bam

-R ./maize_agp_v2.fasta -L chr10.intervals

-o Ki11_full-std.chr10.targets.interval_list >>gatk.log 2>&1 &

java -Xmx4g -jar ./GATK/GenomeAnalysisTK.jar -T IndelRealigner

-l INFO -I Ki11_full-std.bam -R ./maize_agp_v2.fasta

-targetIntervals Ki11_full-std.chr10.targets.interval_list

-L chr10.intervals

-o Ki11_full-std.cleaned_chr10_unsorted.bam >>gatk.log 2>&1 &

java -jar ./picard/SortSam.jar

INPUT=Ki11_full-std.cleaned_chr10_unsorted.bam

OUTPUT=Ki11_full-std.cleaned_chr10.bam

SORT_ORDER=coordinate >>gatk.log 2>&1 &

rm Ki11_full-std.cleaned_chr10_unsorted.bam

java -jar ./picard/BuildBamIndex.jar

INPUT=Ki11_full-std.cleaned_chr10.bam >>gatk.log 2>&1 &

http://samtools.sourceforge.net/SAM1.pdf

Remarks:

 The first command looks for candidate loci where re-alignment should be attempted and

produces the list of such loci (file Ki11_full-std.chr10.targets.interval_list). This list is then

passed as input to the actual re-aligner (the second command).

 The BAM file after re-alignment (second command) is not sorted over genomic coordinate.

Therefore, it needs to be re-sorted using one of the Picard tools (third command). After sorting,

the final BAM file is indexed (fifth command). The intermediate unsorted BAM file is no longer

needed and may be removed.

 In this exercise, we only consider a part of the genome, namely – chromosome 10. This is

accomplished using the –L chr10.intervals option in the first two (GATK) commands. Take a look

inside the file chr10.intervals – this is an example of an interval list. Interval lists are the way of

limiting operation of GATK to certain portions of the genome. Removing this option would make

the program consider whole genome (and significantly increase the time of the analysis). To find

out more about various formats of interval lists accepted by GATK, see

http://www.broadinstitute.org/gsa/wiki/index.php/Input_files_for_the_GATK#Intervals.

 The five commands above have to be repeated for all four samples.

 Screen output generated by all commands will be appended to file gatk.log.

 The timing of all re-alignment-related calculations combined over all four samples is about 30

minutes.

For your convenience, the commands above have been included in script which can be executed simply

as:

(please see comments about scripting in INITAIL STEPS/Step 3). To repeat the calculation for a different

sample (different SAM file), replace Ki11_full_std in the command above with that sample’s name.

./scripts/indel_realign_GATK.sh Ki11_full-std >>gatk.log 2>&1 &

http://www.broadinstitute.org/gsa/wiki/index.php/Input_files_for_the_GATK#Intervals

Step 3. Call SNPs and INDELs

This step will use all four re-aligned, indexed BAM files sorted over genomic coordinate, obtained in

previous steps. The UnifiedGenotyper from GATK will be used to first call the indels, and then SNPs

(note that each command must be typed on a single line):

Remarks:

 Both variant calling steps will use 4 CPU cores (requested by option -nt 4). This can be adjusted

depending on how many CPU cores are available on a machine.

 -stand_call_conf is the minimum phred-scaled Qscore threshold to separate high confidence

from low confidence calls. Only genotypes with confidence >= this threshold are emitted as

called sites. A reasonable threshold is 30 for high-pass calling (this is the default).

 -stand_emit_conf is the minimum phred-scaled Qscore threshold to emit low confidence calls.

Genotypes with confidence >= this but less than the calling threshold are emitted but marked as

filtered (LowQual). The default value is 30.

For your convenience, the commands above have been included in a script which can be executed

simply as:

(please see comments about scripting in INITAIL STEPS/Step 3). If you wish to repeat the calculations, for

example, with different parameters, all you need to do is to edit the

java -Xmx6g -jar ./GATK/GenomeAnalysisTK.jar -T UnifiedGenotyper

-nt 4 -glm INDEL -L chr10.intervals -R ./maize_agp_v2.fasta

-stand_call_conf 40.0 -stand_emit_conf 20.0 -dcov 200

-A DepthOfCoverage -I Ki11_full-std.cleaned_chr10.bam

-I CML103_full-std.cleaned_chr10.bam

-I B73_full-std.cleaned_chr10.bam

-I Mo17_full-std.cleaned_chr10.bam

-o chr10.indel.vcf >>gatk.log 2>&1 &

java -Xmx6g -jar ./GATK/GenomeAnalysisTK.jar -T UnifiedGenotyper

-nt 4 -glm SNP -L chr10.intervals -R maize_ggp_v2.fasta

-stand_call_conf 40.0 -stand_emit_conf 20.0 -dcov 200

-A DepthOfCoverage -I Ki11_full-std.cleaned_chr10.bam

-I CML103_full-std.cleaned_chr10.bam

-I B73_full-std.cleaned_chr10.bam

-I Mo17_full-std.cleaned_chr10.bam

-o chr10.snp.vcf >>gatk.log 2>&1 &

./scripts/call_snp_indel_GATK.sh >>gatk.log 2>&1 &

file ./scripts/call_snp_indel_GATK.sh, change the parameters as desired, change the name of the

output file, and re-run the script. No need to type everything from scratch.

Step 4. Filter variants

GATK offers a tool for filtering variants according to a variety of criteria. For details, see

http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v

2#Basic_indel_filtering. An example of filtering to try is given below:

Remarks:

 The raw VCF files obtained in previous step are passed as input to VariantFiltration using the

option -B:variant,VCF

 Various filtering criteria based on the INFO field of the input VCF file (see header of the VCF file

for definitions of various parameters in the INFO field) are specified using the –filter option. In

the resulting filtered VCF file (given by the –o option) variants failing those filters (i.e., variants

satisfying the specified filter criteria) will be marked with labels specified through the

corresponding -filterName options. For example, variants with allele frequency too low (<0.05)

or too high (>0.95) will be marked as SNPAFFilter (in case of SNPs) and IndelAFFilter (for indels)

– these criteria are specified using option -filter "AF < 0.05 || AF > 0.95" in both commands.

Option -filter "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)" filters out variants for which reads with

zero mapping quality constitute more than 10% of all reads at this site. Variants filtered out with

this criterion will be labeled as HARD_TO_VALIDATE in the filtered VCF file.

java -Xmx4g -jar ./GATK/GenomeAnalysisTK.jar -T VariantFiltration

-R ./maize_agp_v2.fasta -filter "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)"

-filter "QUAL<30.0" -filter "SB>-1.0" -filter "QD<2.0"

-filter "AF < 0.05 || AF > 0.95" -filterName HARD_TO_VALIDATE

-filterName IndelQUALFilter -filterName IndelSBFilter

-filterName IndelQDFilter -filterName IndelAFFilter

-B:variant,VCF chr10.indel.vcf

-o chr10.indel.filtered.vcf >>filter.log 2>&1 &

java -Xmx4g -jar ./GATK/GenomeAnalysisTK.jar -T VariantFiltration

-R ./maize_agp_v2.fasta -B:mask,VCF chr10.indel.filtered.vcf

-filter "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)" -filter "SB>=0.10"

-filter "QD<5.0" -filter "HRun>=4" -filter "AF < 0.05 || AF > 0.95"

-filterName HARD_TO_VALIDATE -filterName SNPSBFilter

-filterName SNPQDFilter -filterName SNPHRunFilter -filterName SNPAFFilter

-cluster 3 -window 10 -B:variant,VCF chr10.snp.vcf

-o chr10.snp.filtered.vcf >>filter.log 2>&1 &

http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Basic_indel_filtering
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Basic_indel_filtering

 In SNP filtering, in addition to filters based on the INFO field of the VCF file, two other filters are

also applied: for SNPs overlapping with indel variants (specified by option -B:mask,VCF), and for

SNPs occurring in clusters (3 SNPs within 10bp of one another; options -cluster 3 -window 10).

For your convenience, the commands above have been included in script which can be executed simply

as:

(please see comments about scripting in INITIAL STEPS/Step 3). If you wish to repeat the calculations, for

example, with different parameters, all you need to do is to edit the script ./scripts/var_filter_GATK.sh,

change the parameters as desired, change the name of the output file, and re-run the script. No need to

type everything from scratch.

./scripts/var_filter_GATK.sh >>filter.log 2>&1 &

ANNOTATE VARIANTS

If you want to annotate the SNP and indels found using any of the variant-calling pipelines, use the

ANNOVAR software. For details, see http://www.openbioinformatics.org/annovar/. ANNOVAR requires

genomes available through UCSC genome browser. Maize and Arabidopsis genomes are not on the

UCSC site, but we have created maize gene annotation files in UCSC format. It is available in the zm2

directory you copied in the beginning of the exercise.

In the first step use the convert2annovar.pl tool to convert the files in vcf format to annovar format. In

the second step - run the actual annotation:

The output files are chr10.snp.filtered.annovar.variant_function and

chr10.snp.filtered.annovar.exonic_variant_function. You can open them, for example, in Excel (on

your local computer).

For your convenience, the commands above have been included in script which can be executed simply

as:

(please see comments about scripting in INITIAL STEPS/Step 3). If you wish to run the annotation for a

different VCF file (e.g., the indel file), re-run the command above with chr10.snp.filtered replaced with

the name of that file (excluding the .vcf extension). To repeat the calculations, for example, with

different parameters, all you need to do is to edit the script ./scripts/annotate.sh, change the

parameters as desired, and re-run the script. No need to type everything from scratch.

./annovar/convert2annovar.pl chr10.snp.filtered.vcf

-format vcf4 1> chr10.snp.filtered.annovar 2>>annotate.log &

./annovar/annotate_variation.pl --buildver zm2

chr10.snp.filtered.annovar ./zm2 1>>annotate.log 2>&1 &

./scripts/annotate.sh chr10.snp.filtered >>annotate.log 2>&1 &

http://www.openbioinformatics.org/annovar/

VISUALIZING ALIGNMENTS WITH IGV VIEWER

The read alignments in BAM format can be superimposed on the reference genome and annotation

information and visualized using the Integrated Genomics Viewer (IGV),

http://www.broadinstitute.org/igv/. A copy of the viewer (Java application) is included in the workshop

materials.

To start the IGV viewer:

After a few seconds, you should see the graphical user interface preloaded by default with human

genome annotations.

You will need to load the maize genome you used in your alignments. To do this, click on File->Import

Genome. In the dialog that appears, specify maize_agp_v2 as Name,

/home/<your_id>/workdir/maize_agp_v2.fasta as the Sequence File, and the annotation file

cd IGV_1.5.38

./igv

http://www.broadinstitute.org/igv/

/home/<your_id>/workdir/ZmB73_5a_WGS-chr.gtf as the Gene File (you can select the files by

browsing to them). Click Save, specifying /home/<your_id>/workdir as the location of the new IGV-

formatted genome file.

The maize genome is now loaded into the viewer and should show up in the genome selection

dropdown (top left corner of the IGV window).

Now load one or more BAM files by clicking on File->Load From File, then navigating to

/home/<your_id>/workdir and selecting a BAM file of your choice. You can load more BAM files

repeating this operation. By the nature of the experiment the reads were obtained from, coverage of

the genome is very “spotty”, i.e., the reads align to a small number of loci scattered widely over the

genome, while most of the genome is not covered at all. Therefore, what you will see right after loading

the BAM files will probably resemble blank screen and will not be too exciting .To see anything

interesting, you will need to zoom in to a particular chromosome and locus where read coverage is

substantial. If you performed the SNP/Indel calling part of the exercise, you can use the VCF files as a

guide. Peek into one of these files and select coordinates of one or more variants, then zoom in to the

region around these coordinates. For example, if you type chr10:149,807,867-149,809,114 in the text

box on top of the IGV window and click Go, you should see something like this:

The screenshot above shows data from two loaded BAM files. The reads are represented by arrows with

the direction corresponding to the strand to which a given read aligns. Light gray colored reads have

zero mapping quality. Differences with respect to reference are shown as colored vertical lines, where

color corresponds to the base.

Use zoom tool (+/- buttons) to change the scale. You can left-click and drag anywhere within the screen

to change the coordinate range. Hover anywhere to see more detailed information about the object.

Right-click anywhere for more display options.

