Published online before print May 13, 2005, 10.1073/pnas.0502655102
PNAS | May 24, 2005 | vol. 102 | no. 21 | 7547-7552
 

BIOPHYSICS
Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: Assessment in two blind tests

S. Oldziej *, {dagger}, C. Czaplewski *, {dagger}, A. Liwo *, {dagger}, M. Chinchio *, M. Nanias *, J. A. Vila *, {ddagger}, M. Khalili *, Y. A. Arnautova *, A. Jagielska *, M. Makowski *, {dagger}, H. D. Schafroth *, R. Kazmierkiewicz *, {dagger}, D. R. Ripoll *, §, J. Pillardy *, §, J. A. Saunders *, Y. K. Kang *, ¶, K. D. Gibson * and H. A. Scheraga *, ||

*Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301; {dagger}Faculty of Chemistry, University of Gdansk, Sobieskiego Str. 18, 80-952 Gdansk, Poland; {ddagger}Instituto de Matemática Aplicada San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina; §Cornell Theory Center, Cornell University, Ithaca, NY 14853-3801; and Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea

Contributed by H. A. Scheraga, March 31, 2005

Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of {alpha} and {alpha}+{beta} proteins [60–70 residues with C{alpha} rms deviation (rmsd) <6 Å]. However, for {alpha}+{beta} proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two {alpha} and three {alpha}+{beta}, with sizes of 53–235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue {alpha}+{beta} protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-Å C{alpha} rmsd. So far this protein is the largest {alpha}+{beta} protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly {alpha}-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 Å rmsd, except the 32 C-terminal residues, most of which form a {beta}-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction.